0000000000943167

AUTHOR

Brian D. Gerardot

showing 7 related works from this author

Spin-layer locking of interlayer excitons trapped in moir\'e potentials

2019

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index, and layer index. Further, twisted TMD heterobilayers can form moir\'e patterns that modulate the electronic band structure according to atomic registry, leading to spatial confinement of interlayer exciton (IXs). Here we report the observation of spin-layer locking of IXs trapped in moir\'e potentials formed in a heterostructure of bilayer 2H-MoSe$_2$ and monolayer WSe$_2$. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin-…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringBilayerExcitonStackingHeterojunction02 engineering and technologyGeneral Chemistry16. Peace & justice010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences0104 chemical sciencesMechanics of MaterialsMonolayerGeneral Materials Science0210 nano-technologySpin (physics)Electronic band structureQuantum
researchProduct

Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

2017

Abstract Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in…

PhotoluminescenceMaterials scienceQC1-999Physics::Optics02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionNanomaterialsmos2lawstrong couplingsingle-photon emitterElectrical and Electronic Engineeringwse2business.industryGraphenePhysicsoptical emission enhancementgraphene021001 nanoscience & nanotechnologyfew layer materialsAtomic and Molecular Physics and Opticshbn0104 chemical sciencesElectronic Optical and Magnetic MaterialsStrong couplingcavity polaritonsOptoelectronicsLight emissionphotoluminescence0210 nano-technologybusinessBiotechnologyNanophotonics
researchProduct

Resonant laser spectroscopy of localized excitons in monolayer WSe_2

2016

Coherent quantum control and resonance fluorescence of few-level quantum systems is integral for quantum technologies. Here we perform resonance and near-resonance excitation of three-dimensionally confined excitons in monolayer WSe2 to reveal near-ideal single-photon fluorescence with count rates up to 3 MHz. Using high-resolution photoluminescence excitation spectroscopy of the localized excitons, we uncover a weakly fluorescent exciton state ∼5  meV blue shifted from the ground-state exciton, providing important information to unravel the precise nature of quantum states. Successful demonstration of resonance fluorescence paves the way to probe the localized exciton coherence in two-dime…

Semiconductor luminescence equationsCondensed Matter::OtherChemistryExciton02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics3. Good healthElectronic Optical and Magnetic MaterialsQuantum technologyCondensed Matter::Materials ScienceResonance fluorescence0103 physical sciencesPhotoluminescence excitationAtomic physicsQuantum-optical spectroscopy010306 general physics0210 nano-technologySpectroscopyBiexcitonOptica
researchProduct

Nanoscale strain-engineering and optics of quantum emitters in a two-dimensional semiconductor

2017

We present deterministic fabrication of a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. Resonant laser spectroscopy of these emitters reveals localized exciton states that exhibit stable, bright and high-purity single photon emission.

0301 basic medicineSemiconductor luminescence equationsMaterials scienceFabricationbusiness.industryExcitonPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyStrain engineeringSemiconductorPhysics::Accelerator PhysicsOptoelectronics0210 nano-technologySpectroscopybusinessQuantumElectron-beam lithographyConference on Lasers and Electro-Optics
researchProduct

Out-of-plane orientation of luminescent excitons in atomically thin indium selenide flakes

2019

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe$_2$ and MoSe$_2$. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe$_2$ and MoSe$…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesPhysics::Optics
researchProduct

Optical and dielectric properties of MoO 3 nanosheets for van der Waals heterostructures

2021

Two-dimensional (2D) insulators are a key element in the design and fabrication of van der Waals heterostructures. They are vital as transparent dielectric spacers whose thickness can influence both the photonic, electronic, and optoelectronic properties of 2D devices. Simultaneously, they provide protection of the active layers in the heterostructure. For these critical roles, hexagonal Boron Nitride (hBN) is the dominant choice due to its large bandgap, atomic flatness, low defect density, and encapsulation properties. However, the broad catalogue of 2D insulators offers exciting opportunities to replace hBN in certain applications that require transparent thin layers with additional opti…

Condensed Matter - Materials ScienceBirefringenceMaterials scienceThin layersPhysics and Astronomy (miscellaneous)Band gapbusiness.industryPhysics::OpticsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHeterojunctionPhysics - Applied PhysicsDielectricApplied Physics (physics.app-ph)Condensed Matter::Materials ScienceSemiconductorOptoelectronicsPhotonicsbusinessRefractive indexApplied Physics Letters
researchProduct

Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide.

2019

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-…

0301 basic medicineMaterials sciencePhotoluminescenceElectronic properties and materialsExcitonScienceGeneral Physics and Astronomychemistry.chemical_elementPhysics::Optics02 engineering and technologyTwo-dimensional materials7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticleCrystal03 medical and health sciencessymbols.namesakeCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic Physicslcsh:ScienceMultidisciplinarybusiness.industryCondensed Matter::OtherQGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDipole030104 developmental biologySemiconductorchemistrysymbolsOptoelectronicslcsh:Qvan der Waals forcePhotonics0210 nano-technologybusinessIndiumNature communications
researchProduct