0000000000943629
AUTHOR
Michael L. Griffiths
Cenozoic megatooth sharks occupied extremely high trophic positions.
Trophic position is a fundamental characteristic of animals, yet it is unknown in many extinct species. In this study, we ground-truth the 15N/14N ratio of enameloid-bound organic matter (δ15NEB) as a trophic level proxy by comparison to dentin collagen δ15N and apply this method to the fossil record to reconstruct the trophic level of the megatooth sharks (genus Otodus). These sharks evolved in the Cenozoic, culminating in Otodus megalodon, a shark with a maximum body size of more than 15 m, which went extinct 3.5 million years ago. Very high δ15NEB values (22.9 ± 4.4‰) of O. megalodon from the Miocene and Pliocene show that it occupied a higher trophic level than is known for any marine s…
Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes
AbstractDiet is a crucial trait of an animal’s lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ66Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark (Otodus megalodon) and the great white shark (Carcharodon carcharias). We reveal that dietary δ66Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species’ trophic level. We observe significant δ66Zn differences among the Otodus and Carcharodon popu…