0000000000946748

AUTHOR

Masahiro Enomoto

Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups☆

Background Fetal-to-neonatal transition is associated with oxidative stress. In preterm infants, immaturity of the antioxidant system favours supplemental oxygen-derived morbidity and mortality. Objectives To assess if prolonging in utero-like oxygenation during the fetal-to-neonatal transition limits oxidative stress in the lung and brain, improving postnatal adaptation of mice pups. Material and methods Inspiratory oxygen fraction (FiO2) in pregnant mice was reduced from 21% (room air) to 14% (hypoxia) 8–12 h prior to delivery and reset to 21% 6–8 h after birth. The control group was kept at 21% during the procedure. Reduced (GSH) and oxidized (GSSG) glutathione and its precursors [γ-glut…

research product

Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure

Chronic exposure to supplemental oxygen (O(2)) induces lung damage and mortality in a sex-dependent manner. The effect of short-term hyperoxia on the newborn pulmonary vasculature is unknown but is, however, of clinical significance in the neonatal resuscitation context. We hypothesize that short-term hyperoxia has a sex-dependent effect on the pulmonary vasculature.Following 1-h 100% O(2) exposure, the pulmonary arteries and lung tissues of newborn rats were evaluated.Superoxide dismutase 3 (SOD3) expression in female pups' lungs was increased as compared with that in the lungs of male pups. As compared with air-treated pups, the response of male pups to thromboxane was increased by O(2), …

research product