0000000000951762
AUTHOR
Brandon G. Bale
Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime
International audience; We propose a new method for the generation of both triangular-shaped optical pulses and flat-top, coherent supercontinuum spectra using the effect of fourth-order dispersion on parabolic pulses in a passive, normally dispersive highly nonlinear fiber. The pulse re-shaping process is described qualitatively and is compared to numerical simulations.
Transition dynamics in optical fiber amplifiers operating in the normal dispersion regime
Over the past decade there has been large interest in ultrafast optical fiber amplifiers operating in the normal dispersion regime because of the discovery that, high-energy pulses with a parabolic intensity profile and linear frequency chirp are the asymptotic solution to the system for arbitrary initial conditions [1]. These so-called “similariton” solutions propagate in a self-similar manner, holding certain relations (scaling) between pulse power, duration, and chirp parameter. While the asymptotic similariton features seem now well understood [1], the physics of the transition to this solution from arbitrary initial pulses has not been fully explored yet (most of the previous attempts …
New developments in the study of optical parabolic pulses in normally dispersive fibers
International audience; We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibers. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.