0000000000952784

AUTHOR

Monica Frinchi

Metabotropic glutamate (mGLU2/3) receptor agonist LY379268 stimulates the production of glial cell line-derived neurotrophic factor (GDNF) in the mouse striatum: in vivo analysis of GDNF Receptor (c-RET) related signal transduction pathways activation.

research product

Neuronal FGFR1 transactivation by inducing FGFR1/5-HT1A heteroreceptor complexes formation

There are no clear data on the molecular mechanism by which the hippocampal 5-HT transmission contributes to the neuroprotective and antidepressant effects of 5-HT uptake blockers. Previously, we revealed that a 5-HT1A agonist may induce phosphorylation of FGFR1 and ERK1/2 in rat hippocampus independent of FGF-2, suggesting transactivation of FGFR1 tyrosine kinase in the absence of neurotrophic factor binding. As extension of previous work, using BRET analysis and coimmunoprecipitation in cellular models, FGFR1-5-HT1A heteroreceptor complexes have been demonstrated and agonist modulation characterized. In vitro assays on ERK1/2 phosphorylation in HEK cells and primary hippocampal cultures h…

research product

FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain

It is largely accepted that neurogenesis in the adult brain decreases with age and reduced levels of local neurotrophic support is speculated to be a contributing factor. Among neurotrophic factors involved on neurogenesis, we focused our attention on the neurotrophic system fibroblast growth factor-2 (FGF-2) and its receptor FGFR1, a potent modulator of precursor cell proliferation. In the present work, we aimed to analyse if potential age-dependent changes of the FGF-2/FGFR1 neurotrophic system may give account for the age-dependent decline of precursor cell proliferation in the neurogenic region of the subventricular zone (SVZ) in the rat brain. Using in situ hybridization and western bl…

research product

No effects of low-intensity endurance exercise on muscle necrosis in the diaphragm of mdx mice

Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle weakness. We have previously shown that low-intensity endurance training prevented muscle damage (Frinchi et al, Int J Sports Med 2014). Since the effects of low-intensity endurance training on the the diaphragm in the mdx mouse model are unknown, in the same animals we investigated Cx39 protein levels (Western blotting) in homogenates of the diaphragm before and after training. Mdx and wild-type (WT) mice were randomly assigned to sedentary (mdx-S, n=17; WT-S, n=19) or trained (mdx-EX, n=14; WT-EX, n=16) groups. Low-intensity endurance training (running on a wheel) was done 5 days/week for 6 weeks at progress…

research product

Beneficial Role of Exercise in the Modulation of

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding …

research product

Downregulation of the Astroglial Connexin Expression and Neurodegeneration after Pilocarpine-Induced Status Epilepticus

Astrocytic networks and gap junctional communication mediated by connexins (Cxs) have been repeatedly implicated in seizures, epileptogenesis, and epilepsy. However, the effect of seizures on Cx expression is controversial. The present study focused on the response of Cxs to status epilepticus (SE), which is in turn an epileptogenic insult. The expression of neuronal Cx36 and astrocytic Cx30 and Cx43 mRNAs was investigated in the brain of rats in the first day after pilocarpine-induced SE. In situ hybridization revealed a progressive decrease in Cx43 and Cx30 mRNA levels, significantly marked 24 h after SE onset in neocortical areas and the hippocampus, and in most thalamic domains, whereas…

research product

Caratterizzazione di un meccanismo trofico, mediato dal FGF-2 e dal suo recettore FGFR1, nelle cellule staminali della zona subventricolare del cervello di ratto adulto

research product

Reduction of mdx mouse muscle degeneration by low-intensity endurance exercise: a proteomic analysis in quadriceps muscle of exercised versus sedentary mdx mice

By proteomic analysis we found an up-regulation of four carbonic anhydrase-3 (CA3) isoforms and a down-regulation of superoxide dismutase [Cu-Zn] (SODC) in quadriceps of sedentary X-linked muscular dystrophy (mdx) mice as compared with wild–type (WT) mice and the levels were significantly restored to WT values following low-intensity endurance exercise.

research product

Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents

Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance …

research product

Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease

Background: Aβ 1-42 peptide abnormal production is associated with the development and maintenance of neuroinflammation and oxidative stress in brains from Alzheimer disease (AD) patients. Suppression of neuroinflammation may then represent a suitable therapeutic target in AD. We evaluated the efficacy of IFNβ1a in attenuating cognitive impairment and inflammation in an animal model of AD. Methods: A rat model of AD was obtained by intra-hippocampal injection of Aβ 1-42 peptide (23 μg/2 μl). After 6 days, 3.6 μg of IFNβ1a was given subcutaneously (s.c.) for 12 days. Using the novel object recognition (NOR) test, we evaluated changes in cognitive function. Measurement of pro-inflammatory or …

research product

Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System.

Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological…

research product

Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus

AbstractAlthough connexin36 (Cx36) has been studied in several tissues, it is notable that no data are available on Cx36 expression in the carotid body and the intestine. The present study was undertaken to evaluate using immunohistochemistry, PCR and Western blotting procedures, whether Cx36 was expressed in the mouse carotid body and in the intestine at ileum and colon level. In the carotid body, Cx36 was detected as diffuse punctate immunostaining and as protein by Western blotting and mRNA by RT-PCR. Cx36 punctate immunostaining was also evident in the intestine with localization restricted to the myenteric plexus of both the ileum and the colon, and this detection was also confirmed by…

research product

Regulation of connexin gene expression during skeletal muscle regeneration in the adult rat

In the adult skeletal muscle, various kinds of trauma promote proliferation of satellite cells that differentiate into myoblasts forming new myofibers or to repair the damaged one. The aim of present work was to perform a comparative spatial and temporal analysis of connexin (Cx) 37, Cx39, Cx40, Cx43, and Cx45 expression in the adult regenerating skeletal muscle in response to crush injury. Within 24 h from injury, Cx37 expression was upregulated in the endothelial cells of blood vessels, and, 5 days after injury, Cx37-expressing cells were found inside the area of lesion and formed clusters generating new blood vessels with endothelial cells expressing Cx37. Three days after injury, Cx39 m…

research product

Recovery of damaged skeletal muscle in mdx mice by low-intensity endurance exercise

research product

Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain

Several findings have suggested the existence in the subventricular zone (SVZ) from sagittal sections of adult rat brain of a trophic mechanism, mediated by fibroblast growth factor-2 (FGF-2) and its multiple high-affinity FGF receptors (FGFRs), regulating neurogenesis mainly by controlling precursor cell proliferation. However, no clear data are available on the expression of FGF-2 and FGFRs in proliferating precursor cells of the SVZ. To address these questions we examined FGF-2 mRNA and its FGFR mRNA expression in proliferating precursor cells of the SVZ by using a double labeling procedure, combining in situ hybridization for FGF-2 and its FGFR mRNA with immunohistochemistry for bromode…

research product

Defective dopaminergic control of contractility in colon from hypoxanthine‐guanine phosphoribosyltransferase deficient (HPRT‐) knockout mice

research product

The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial f…

research product

Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus

AbstractRecently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS ex…

research product

Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease.

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt(−)). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt(−) tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol a…

research product

The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain.

Neurogenesis occurs in two regions of the adult brain, namely, the subventricular zone (SVZ) throughout the wall of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG) in hippocampal formation. Adult neurogenesis requires several neurotrophic factors to sustain and regulate the proliferation and differentiation of the adult stem cell population. In the present review, we examine the cellular and functional aspects of a trophic system mediated by fibroblast growth factor-2 (FGF-2) and its receptors (FGFRs) related to neurogenesis in the SVZ and SGZ of the adult rat brain. In the SVZ, FGF-2 is expressed in GFAP-positive cells of SVZ but is not present in proliferati…

research product

Effects of mild aerobic exercise training on the diaphragm in mdx mice

Mild endurance exercise training positively affects limb skeletal muscle in the mdx mice model of Duchenne Muscular Dystrophy (DMD). However, few and controversial data are available on the effects of mild exercise training on the diaphragm of mdx mice. The diaphragm was examined in mdx and wild type mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline and after 30 and 45 days of training (5 d/wk for 6 weeks), diaphragm muscle morphology and Cx39 protein were assessed. In addition, tissue levels of the chaperonin Hsp60 were measured at the same time points in gastrocnemius, quadriceps and diaphragm in each experimental group. A…

research product

Characterization of a trophic mechanism mediated by FGF-2 and its receptor FGFR1 expressed in the precursor cells of the subventricular zone (SVZ) in the adult rat brain.

research product

SKELETAL MUSCLE REGENERATION IN THE ADULT MOUSE AND RAT: STUDY ON CONNEXIN EXPRESSION AND ROLE IN NORMAL AND REGENERATING SKELETAL MUSCLE AND ON LOW

The first aim of present work was to perform a comparative spatial and temporal analysis of connexin (Cx) Cx37, Cx39, Cx40, Cx43, and Cx45 expression in developing skeletal muscle and in the adult regenerating skeletal muscle in response to crush injury. Among the Cxs examined, only the Cx39, Cx43 and Cx45 were found expressed during embryonic life and progressively reduced during early postnatal life to become dramatically expressed at very low levels like Cx43 and Cx45, or to be undetectable like Cx39 in the adult muscle. Cx37 and Cx40 were found expressed at low levels and were localized in the endothelial cells. In the adult skeletal muscle, various kinds of trauma promote proliferation…

research product

Neurotrophic systems promoting neurogenesis in the adult rat brain

research product

ANTIPROLIFERATIVE EFFECTS OF GUANINE-BASED PURINES AND IDENTIFICATION OF A CANDIDATE RECEPTOR

research product

Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects

The differentiation of neural progenitors is a complex process that integrates different signals to drive transcriptional changes, which mediate metabolic, electrophysiological, and morphological cellular specializations. Understanding these adjustments is essential within the framework of stem cell and cancer research and therapy. Human neuroblastoma SH-SY5Y cells, widely used in neurobiology research, can be differentiated into neuronal-like cells through serum deprivation and retinoic acid (RA) supplementation. In our study, we observed that the differentiation process triggers the expression of Heat Shock Protein 70 (HSP70). Notably, inhibition of HSP70 expression by KNK437 causes a dra…

research product

Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders

Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptot…

research product

Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures

Abstract Background Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Methods Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosp…

research product

Analysis of connexin (Cx36 and Cx45) expression in the carotid body, adrenal medulla and enteric neurons of both mouse and rat

Cx36 and Cx45 are considered the main connexins expressed in neuronal cells of central nervous system (Belluardo N. et al. Brain Res. 2000)), but at present no complete data are available on their expression in the neurons of crest-derived neuroendocrine organ, such as the adrenal medulla, the carotid body and the enteric nervous system. Therefore the present study was undertaken to evaluate using immunohistochemistry and western blotting procedures, both in rat and mouse, whether Cx36 and Cx45 were expressed in neuronal cells of the carotid body, adrenal medulla and myenteric plexus at ileum and colon level. In the carotid body of both mouse and rat only Cx45 was found expressed as diffuse…

research product

Recovery of Damaged Skeletal Muscle in mdx Mice through Low-intensity Endurance Exercise

The lack of dystrophin in mdx mice leads to cycles of muscle degeneration and regeneration processes. Various strategies have been proposed in order to reduce the muscle-wasting component of muscular dystrophy, including implementation of an exercise programme. The aim of this study was to examine how low-intensity endurance exercise affects the degeneration-regeneration process in dystrophic muscle of male mdx mice. Mice were subjected to low-intensity endurance exercise by running on a motorized Rota-Rod for 5 days/week for 6 weeks. Histomorphological analysis showed a signifi cant reduction of measured inflammatory-necrotic areas in both gastrocnemius and quadriceps muscle of exercised m…

research product

Small airways in sedentary and endurance-trained dystrophic (mdx) mice.

The effects of mild endurance exercise training on the small airways in mdx mice are unknown. We compared epithelial thickness and turnover, apoptosis, and stress marker expression in small airways of mdx mice and wild-type (WT) controls, at rest and during exercise training. Mdx and WT mice were randomly assigned to sedentary (mdx-S, n=17; WT-S, n=19) or trained (mdx- EX, n=14; WT-EX, n=16) groups. Low-intensity endurance training (running on a wheel) was done 5 d/wk for 6 wk at progressively increasing speed (rpm from 16 to 24) and time (15 min to 1 h). Lungs were processed for light microscopy and periodic acid Schiff (PAS) staining. Hsp60 and PCNA were quantified by immunohistochemistry…

research product

Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain

A number of in vitro and in vivo studies using selective agonists have indicated a neuroprotective role for group-II metabotropic glutamate (mGlu2/3) receptors in various models of neuronal injury. Although an interplay among neurotrophic factors and mGlu2/3 receptors signalling system has been suggested as possible mechanism involved on neuroprotection, at present poor information are available concerning the in vivo regulation by mGlu2/3 receptors activation of specific neurotrophic factors. By using in situ hybridization and western blotting methods the aim of present study was to analyse the potential regulatory role of selective mGluR2/3 agonist LY379268 treatment on brain derived neur…

research product

Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms

Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors r…

research product

Mild Aerobic Exercise Training Hardly Affects the Diaphragm ofmdxMice

In the mdx mice model of Duchenne Muscular Dystrophy (DMD), mild endurance exercise training positively affected limb skeletal muscles, whereas few and controversial data exist on the effects of training on the diaphragm. The diaphragm was examined in mdx (C57BL/10ScSn-Dmdmdx) and wild-type (WT, C57BL/10ScSc) mice under sedentary conditions (mdx-SD, WT-SD) and during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days (training: 5 d/wk for 6 weeks), diaphragm muscle morphology and Cx39 protein were assessed. In addition, tissue levels of the chaperonins Hsp60 and Hsp70 and the p65 subunit of nuclear factor-kB (NF-kB) were measured in diaphragm, gastrocnemius, and q…

research product

Nicotine-induced fibroblast growth factor-2 restores the age-related decline of precursor cell proliferation in the subventricular zone of rat brain.

Precursor cell proliferation is present in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus of adult rat and persists during aging although at reduced levels. Previous studies have shown that acute intermittent nicotine treatment significantly increases fibroblast growth factor-2 (FGF-2) expression in several brain regions of aged rats. The aim of the present investigation was to test the hypothesis that nicotine-induced expression of FGF-2 may restore the age-related decline of precursor cell proliferation. It was first demonstrated that nicotine treatment increases both mRNA and protein FGF-2 in the SVZ of aged …

research product

Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus.

The cholinergic system plays a crucial role in modulating in the central nervous system physiological responses such as neurogenesis, neuronal differentiation, synaptic plasticity, and neuroprotection. In a recent study, we showed that Oxotremorine-M, a non-selective muscarinic acetylcholine receptor agonist, is able to transactivate the fibroblast growth factor receptor and to produce a significant increase in the hippocampal primary neurite outgrowth. In the present study we aimed to explore in the rat hippocampus the possible effect of acute or chronic treatment with Oxotremorine-M on some heat shock proteins (Hsp60, Hsp70, Hsp90) and on activation of related transcription factor heat sh…

research product

Distinct pattern of Connexin gene expression during skeletal muscle regeneration in the adult rat.

Aim: The aim of present work was to test the hypothesis that Cx37, Cx39, Cx40, Cx43 and Cx45 expression could be regulated in adult regenerating skeletal muscle in response to injury promoting activation of satellite cells involved in myofibers repair and regeneration. Methods: Using in situ hybridization and immunohistochemistry procedures we examined the spatial and temporal expression pattern of above listed connexins in the regenerating gastrocnemious muscle following a mechanical injury. Results: Cx43 and Cx45 mRNA were up-regulated very early, by 3 hour following muscle injury, and were localised in satellite cells, M-cadherin positive cells, distributed around the area of lesion. Thr…

research product

Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors

Acute or chronic administration of guanosine (GUO) induces anxiolytic-like effects, for which the adenosine (ADO) system involvement has been postulated yet without a direct experimental evidence. Thus, we aimed to investigate whether adenosine receptors (ARs) are involved in the GUO-mediated anxiolytic-like effect, evaluated by three anxiety-related paradigms in rats. First, we confirmed that acute treatment with GUO exerts an anxiolytic-like effect. Subsequently, we investigated the effects of pretreatment with ADO or A1R (CPA, CCPA) or A2AR (CGS21680) agonists 10 min prior to GUO on a GUO-induced anxiolytic-like effect. All the combined treatments blocked the GUO anxiolytic-like effect, …

research product

Neuroprotective and Antioxidant Role of Oxotremorine-M, a Non-selective Muscarinic Acetylcholine Receptors Agonist, in a Cellular Model of Alzheimer Disease.

AbstractAlzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and …

research product

Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex.

Rationale: In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Objectives: Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2…

research product

NEUROPROTECTIVE ACTION OF RESVERATROL AGAINST OXIDATIVE STRESS AND IN THE MOUSE MODEL OF PARKINSON'S DISEASE.

research product

FGF-2/FGFR neurotrophic system expression level does not give account for the age-related decline of neurogenesis in the rat brain.

research product

Small airways in in sedentary and endurance-trained dystrophic (mdx) mice

The effects of mild endurance exercise training on the small airways in mdx mice are unknown. We compared epithelial thickness and turnover, apoptosis, and stress marker expression in small airways of mdx mice and wild-type (WT) controls, at rest and during exercise training. Mdx and WT mice were randomly assigned to sedentary (mdx-S, n=17; WT-S, n=19) or trained (mdx-EX, n=14; WT-EX, n=16) groups. Low-intensity endurance training (running on a wheel) was done 5 d/wk for 6 wk at progressively increasing speed (rpm from 16 to 24) and time (15 min to 1 h). Lungs were processed for light microscopy and periodic acid Schiff (PAS) staining. Hsp60 and PCNA were quantified by immunohistochemistry.…

research product

Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration

The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potentia…

research product