0000000000956191

AUTHOR

Zoltán Halasi

showing 1 related works from this author

Irreducible induction and nilpotent subgroups in finite groups

2019

Suppose that $G$ is a finite group and $H$ is a nilpotent subgroup of $G$. If a character of $H$ induces an irreducible character of $G$, then the generalized Fitting subgroup of $G$ is nilpotent.

Pure mathematicsFinite groupAlgebra and Number Theory010102 general mathematicsMathematics::Rings and Algebras01 natural sciencesFitting subgroupNilpotentMathematics::Group TheoryCharacter (mathematics)Simple group0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Mathematics::Representation TheoryMathematics - Representation Theory20C15 20C33 (primary) 20B05 20B33 (secondary)Mathematics
researchProduct