0000000000959080
AUTHOR
D. Nag
The ALICE Transition Radiation Detector: Construction, operation, and performance
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …
Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p–Pb collisions at sNN=5.02 and 8.16 TeV
A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of Chi…
Production of 4He and 4He‾ in Pb–Pb collisions at sNN=2.76TeV at the LHC
Results on the production of 4 He and He‾4 nuclei in Pb–Pb collisions at sNN=2.76TeV in the rapidity range |y|<1 , using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0–10% central events are found to be dN/dyHe4=(0.8±0.4(stat)±0.3(syst))×10−6 and dN/dyHe‾4=(1.1±0.4(stat)±0.2(syst))×10−6 , respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature ( Tchem=156MeV ) as for light hadrons. The measured ratio of He‾4/4He is 1.4±0.8(stat)±0.5(syst) .
Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV
We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…
Elliptic Flow in Pb-Pb Collisions at
We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v2 is investigated as …
Measurement of Z 0 -boson production at large rapidities in Pb–Pb collisions at
The production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN=5.02TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0→μ+μ−), based on muons selected with pseudo-rapidity −4.0 20GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67±0.11(stat.)±0.03(syst.)±0.06(corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0…