0000000000961906

AUTHOR

Elisa Dolfini

showing 2 related works from this author

Motor recruitment during action observation: Effect of interindividual differences in action strategy

2020

Abstract Visual processing of other’s actions is supported by sensorimotor brain activations. Access to sensorimotor representations may, in principle, provide the top-down signal required to bias search and selection of critical visual features. For this to happen, it is necessary that a stable one-to-one mapping exists between observed kinematics and underlying motor commands. However, due to the inherent redundancy of the human musculoskeletal system, this is hardly the case for multijoint actions where everyone has his own moving style (individual motor signature—IMS). Here, we investigated the influence of subject’s IMS on subjects’ motor excitability during the observation of an actor…

AdultMaleRecruitment NeurophysiologicalMultijoint actionsDissociation (neuropsychology)Cognitive Neurosciencemedicine.medical_treatmentIndividualityObservationKinematicsMotor Activity050105 experimental psychologyNOVisual processingYoung Adult03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicineRedundancy (engineering)Humans0501 psychology and cognitive sciencesAcademicSubjects/MED00385VariabilityElectromyographyAcademicSubjects/SCI0187005 social sciencesBrainAction observationBiomechanical PhenomenaTranscranial magnetic stimulationHuman musculoskeletal systemmedicine.anatomical_structureAction (philosophy)Cortical ExcitabilityMotor unit recruitmentFemaleAcademicSubjects/MED00310Original ArticlePsychology030217 neurology & neurosurgeryAction observation Individual motor signatures Multijoint actions Transcranial magnetic stimulation VariabilityIndividual motor signaturesTranscranial magnetic stimulationCognitive psychology
researchProduct

Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals

2020

Modulation of cortical beta rhythm (15-30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the …

Efferentmedicine.medical_treatmentCognitive NeuroscienceNeuroscience (miscellaneous)Socio-culturaleStimulationSomatosensory systemLateralization of brain functionlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDevelopmental NeurosciencemedicineBeta RhythmBeta (finance)transcranial magnetic stimulation (TMS)median nerve stimulation (MNS)lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologybeta rebound median nerve stimulation (MNS) motor area somatosensory area temporal integration transcranial magnetic stimulation (TMS)Original Research0303 health sciencestemporal integrationsomatosensory areamotor areabusiness.industrybeta reboundTranscranial magnetic stimulationmedicine.anatomical_structurebusinessNeuroscience030217 neurology & neurosurgeryMotor cortexNeuroscienceFrontiers in Systems Neuroscience
researchProduct