0000000000962535

AUTHOR

F. A. Ali

New collective structures in Au179 and their implications for the triaxial deformation of the Pt178 core

research product

Collective excitations in the transitional nucleiRe163andRe165

Excited states in the neutron-deficient nuclei ${}_{75}^{163}{\mathrm{Re}}_{88}$ and ${}_{75}^{165}{\mathrm{Re}}_{90}$ were populated in the ${}^{106}{\mathrm{Cd}(}^{60}\mathrm{Ni},\phantom{\rule{0.16em}{0ex}}p2n\ensuremath{\gamma})$ and ${}^{92}{\mathrm{Mo}(}^{78}\mathrm{Kr}$, $3p2n\ensuremath{\gamma})$ fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. \ensuremath{\gamma} rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for $^{163}\mathrm{Re}$ and $^{165}\mathrm{Re}$ were identifie…

research product

Fine structure in the α decay of 156Lu and 158Ta

Fine structure in the α decay of high-spin states in 156Lu and 158Ta has been identified by means of αγ - coincidence analysis. One new α decay from 156Lu and two from 158Ta were identified, one of which was found to populate a previously unknown state in 154Lu. The hindrance-factor systematics from all four odd-odd, N = 85 nuclei with known α-decaying, πh11/2 coupled states were reviewed and are discussed. These proved consistent with the previously assigned (πh11/2νh9/2 )10+ configuration of the α-decaying state in 156Lu, which differs from the (πh11/2ν f7/2 )9+ assignments in the other three nuclei. peerReviewed

research product

De-excitation of the strongly coupled band in 177Au and implications for core intruder configurations in the light Hg isotopes

International audience; Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyväskylä Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these…

research product

Decay of a 19(-) isomeric state in Lu-156

A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10(+) state in Lu-156 has been discovered. The Lu-156 nuclei were produced by bombarding isotopically enriched Cd-106 targets with beams of Ni-58 ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19(-) for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in Lu-156 indicates that the [pi h(11/)(2)(-1) circle times nu h(…

research product

Decay of a 19− isomeric state in 156Lu

A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10 + state in 156 Lu has been discovered. The 156 Lu nuclei were produced by bombarding isotopically enriched 106 Cd targets with beams of 58 Ni ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19 − for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in 156 Lu indicates that the [ π h − 1 11 / 2 ⊗ ν h 9 / 2 ] 10 + st…

research product

Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf

Fine structure in the α decay of high-spin isomers in 155Lu(25/2−) and 156Hf (8+) has been studied for the first time using αγ -coincidence analysis. Three new α decays from 155Lu(25/2−) and two from 156Hf (8+) have been identified, populating seniority s > 1 states in the N = 82 nuclei 151Tm and 152Yb, respectively. The reduced hindrance factors of the α decays support the previous configuration assignments of the populated states. This is the first observation of states with excitation energy greater than 1.5 MeV being populated following α decay in nuclei outside of the 208Pb region. peerReviewed

research product

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg-22

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {\it ab initio} framework without the use of effective charges; for example with the proper evolution of operators, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of $E2$ strength in $^{22}$Mg and its mirror $^{22}$Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new $B(E2)$ values while in-medium similarity-renormalization-group calculations consistently underpre…

research product

Decay of a 19− isomeric state in Lu156

A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10(+) state in Lu-156 has been discovered. The Lu-156 nuclei were produced by bombarding ...

research product

New collective structures in 179Au and their implications for the triaxial deformation of the 178Pt core

The extremely neutron-deficient isotope 179Au has been studied by a combination of in-beam γ-ray and isomeric-decay spectroscopy. For in-beam spectroscopy, the recoil-isomer tagging technique was employed, using the known 3/2−, T1/2=328 ns isomer. A new rotational band, associated with the unfavored signature band of the 1h9/2⊕2f7/2 proton-intruder configuration, was revealed. A previously unknown, high-spin isomeric state with an excitation energy of 1743(17) keV and T1/2=2.16(8)µs was discovered. Five decay paths were identified, some of them feeding previously unknown non-yrast excited states, associated with the 1i13/2 proton-intruder configuration. Calculations based on the particle-pl…

research product

Fine structure in the α decay of high-spin isomers in Lu155 and Hf156

Fine structure in the a decay of high-spin isomers in Lu-155( 25/2(-)) and Hf-156(8(+))has been studied for the first time using alpha gamma- coincidence analysis. Three new a decays from Lu-155(25 ...

research product

Improved measurement of the 02+→01+ E0 transition strength for 72Se using the SPICE spectrometer

The selenium isotopes lie at the heart of a tumultuous region of the nuclear chart where shape coexistence effects grapple with neutron-proton pairing correlations, triaxiality, and the impending proton drip line. In this work, a study of 72Se by internal conversion electron and γ-ray spectroscopy was undertaken with the SPICE and TIGRESS arrays. New measurements of the branching ratio and lifetime of the 02+ state were performed, yielding a determination of ρ2(E0;02+→01+)=29(3) milliunits. Two-state mixing calculations were performed that highlighted the importance of interpretation of such E0 strength values in the context of shape coexistence. peerReviewed

research product

De-excitation of the strongly coupled band in Au177 and implications for core intruder configurations in the light Hg isotopes

Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyvaskyla Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these configurations might be…

research product

Fine structure in the α decay of Lu156 and Ta158

research product

Population of a low-spin positive-parity band from high-spin intruder states in 177Au: The two-state mixing effect

The extremely neutron-deficient isotopes 177,179Au were studied by means of in-beam ?-ray spectroscopy. Specific tagging techniques, ?-decay tagging in 177Au and isomer tagging in 179Au, were used for these studies. Feeding of positive-parity, nearly spherical states, which are associated with 2d3/2 and 3s1/2 proton-hole configurations, from the 1i13/2 proton-intruder configuration was observed in 177Au. Such a decay path has no precedent in odd-Au isotopes and it is explained by the effect of mixing of wave functions of the initial state. © 2020

research product

Transmission Efficiency of the SAGE Spectrometer Using GEANT4

The new SAGE spectrometer allows simultaneous electron and γ-ray in-beam studies of heavy nuclei. A comprehensive GEANT4 simulation suite has been created for the SAGE spectrometer. This includes both the silicon detectors for electron detection and the germanium detectors for γ-ray detection. The simulation can be used for a wide variety of tests with the aim of better understanding the behaviour of SAGE. A number of aspects of electron transmission are presented here.

research product

Collective excitations in the transitional nuclei 163Re and 165Re

Excited states in the neutron-deficient nuclei 163 75 Re88 and 165 75 Re90 were populated in the 106Cd(60Ni, p2nγ ) and 92Mo(78Kr, 3p2nγ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single πh11/2 quasiproton configuration. The bands display large energy spl…

research product