0000000000964483

AUTHOR

Horst Weiss

NMR and Quantum-Chemical Study on the Structure of Ester Enolate−Aluminum Alkyl Complexes as Models of the Active Center in the Anionic Polymerization of Methacrylates in Toluene

6Li and 13C NMR on ethyl α-lithioisobutyrate (EiBLi) and quantum-chemical (DFT) calculations on methyl α-lithioisobutyrate (MiBLi) were used to elucidate the structure of the active center in the anionic polymerization of methacrylates in the presence of triethylaluminum (AlEt3) in toluene. This study reveals ester enolate/aluminum alkyl complexes with different degrees of association, (MiBLi·AlEt3)n (n = 1, 2, 4), and different stoichiometries, MiBLi·xAlEt3 (x = 1, 2). In the presence of methyl pivalate (MPiv), which is taken as a model compound for the monomer and polymer, complexes such as (MiBLi·MPiv·AlEt3)n (n = 1, 2) are formed. These complexes can dissociate into MiBLi·2AlEt3 and MPi…

research product

Novel initiating systems for the living polymerization of acrylates and methacrylates

The polymerization of methyl methacrylate with lithiated initiators in the presence of aluminium alkyls in toluene has living character but it deviates from conventional first-order kinetics and the polymers have fairly broad molecular weight distributions. This results from the formation and precipitation of a coordinative polymer network in which the lithium ions of the living chain ends are coordinated to the in-chain ester carbonyl groups. Thus, the network formation can be prevented by adding Lewis bases like methyl pivalate which coordinate to the living chain ends instead ofthe polymer. Alternatively, one can introduce tetraalkylammonium salts aiming at an exchange of the lithium ion…

research product