0000000000965583

AUTHOR

Aleksandra Wolanin

0000-0002-9029-6911

showing 1 related works from this author

Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations

2019

Abstract Satellite remote sensing has been widely used in the last decades for agricultural applications, both for assessing vegetation condition and for subsequent yield prediction. Existing remote sensing-based methods to estimate gross primary productivity (GPP), which is an important variable to indicate crop photosynthetic function and stress, typically rely on empirical or semi-empirical approaches, which tend to over-simplify photosynthetic mechanisms. In this work, we take advantage of all parallel developments in mechanistic photosynthesis modeling and satellite data availability for an advanced monitoring of crop productivity. In particular, we combine process-based modeling with …

FOS: Computer and information sciencesLandsat 8Earth observation010504 meteorology & atmospheric sciencesComputer Vision and Pattern Recognition (cs.CV)0208 environmental biotechnologyComputer Science - Computer Vision and Pattern RecognitionSoil Science02 engineering and technologyGross primary productivity (GPP)Sentinel-2 (S2)Machine learningcomputer.software_genre01 natural sciencesRadiative transfer modeling (RTM)Atmospheric radiative transfer codesSoil-canopy-observation of photosynthesis and the energy balance (SCOPE)Computers in Earth SciencesC3 crops0105 earth and related environmental sciencesRemote sensing2. Zero hungerArtificial neural networkbusiness.industryEmpirical modellingNeural networks (NN)GeologyVegetationMachine learning (ML)15. Life on landHybrid approach22/4 OA procedure020801 environmental engineeringVariable (computer science)ITC-ISI-JOURNAL-ARTICLEEnvironmental scienceSatelliteArtificial intelligenceScale (map)businesscomputerRemote sensing of environment
researchProduct