0000000000965591

AUTHOR

J. Joger

showing 1 related works from this author

Quantum dynamics of an atomic double-well system interacting with a trapped ion

2014

We theoretically analyze the dynamics of an atomic double-well system with a single ion trapped in its center. We find that the atomic tunnelling rate between the wells depends both on the spin of the ion via the short-range spin-dependent atom-ion scattering length and on its motional state with tunnelling rates reaching hundreds of Hz. A protocol is presented that could transport an atom from one well to the other depending on the motional (Fock) state of the ion within a few ms. This phonon-atom coupling is of interest for creating atom-ion entangled states and may form a building block in constructing a hybrid atom-ion quantum simulator. We also analyze the effect of imperfect ground st…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum dynamicsQuantum simulatorFOS: Physical sciences7. Clean energyIon trappingAtomic and Molecular Physics and OpticsIonPhysics::Plasma PhysicsAtomIon trapPhysics::Atomic PhysicsAtomic physicsSpin (physics)Quantum Physics (quant-ph)Trapped ion quantum computer
researchProduct