0000000000968604
AUTHOR
S. F. Ashley
Reinvestigation of the excited states in the proton emitter $^{151}$Lu: particle-hole excitations across the $N=Z=64$ subshell
The excited states of the proton emitter $^{151}$Lu were reinvestigated in a recoil-decay tagging experiment at the Accelerator Laboratory of the University of Jyv\"askyl\"a (JYFL). The level scheme built on the ground state of $^{151}$Lu was updated with five new $\gamma$-ray transitions. Large-scale shell model calculations were carried out to interpret the experimental level scheme. It is found that the excitation energies of states above the $27/2^-$ and $23/2^+$ isomeric levels can be sensitive to excitations from $g_{7/2}$ and $d_{5/2}$ to single-particle orbitals above $N=Z=64$.
Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151Lu
The quenching of the experimental spectroscopic factor for proton emission from the short-lived $d_{3/2}$ isomeric state in $^{151m}$Lu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyv\"{a}skyl\"{a}. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) $\mu$s, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probabilit…
High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.
Reinvestigation of the excited states in the proton emitter 151Lu : Particle-hole excitations across the N=Z=64 subshell
The excited states of the proton emitter 151Lu were reinvestigated in a recoil-decay tagging experiment at the Accelerator Laboratory of the University of Jyväskylä (JYFL). The level scheme built on the ground state of 151Lu was updated with five new γ -ray transitions. Large-scale shell model calculations were carried out in the model space consisting of the neutron and proton orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 with the optimized monopole interaction in order to interpret the experimental level scheme of 151Lu. It is found that the excitation energies of states above the 27/2− and 23/2+ isomeric levels in 151Lu can be sensitive to excitations from g7/2 and d5/2 to single-parti…