0000000000970517

AUTHOR

C. S. Devlin

showing 7 related works from this author

Upgrades to the collinear laser spectroscopy experiment at the IGISOL

2020

Abstract We give an overview of recent changes to the collinear laser spectroscopy beamline in the IGISOL laboratory. We present a new data acquisition system, commissioning of a newly installed charge exchange cell, and cooler-voltage calibration measurements. Currently ongoing modifications to the RFQ cooler-buncher are also discussed.

Nuclear and High Energy PhysicsMaterials science010308 nuclear & particles physicsbusiness.industry01 natural sciencesData acquisitionOpticsBeamline0103 physical sciencesCalibration010306 general physicsSpectroscopybusinessInstrumentationCharge exchangeNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

High-resolution laser spectroscopy of Al27–32

2021

Hyperfine spectra of $^\text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p\ ^2\text{P}^\text{o} _{3/2}\rightarrow 3s^24s\ ^2\text{S}_{1/2}$ atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in…

PhysicsMagnetic moment010308 nuclear & particles physicsCharge (physics)7. Clean energy01 natural sciencesSpectral lineCharge radius0103 physical sciencesQuadrupoleAtomic physics010306 general physicsSpectroscopyMagnetic dipoleHyperfine structurePhysical Review C
researchProduct

Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc

2021

Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…

CHARGE RADIINuclear and High Energy PhysicsProtonCollinear laser spectroscopyQC1-999spektroskopiaNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-ex01 natural sciencesPhysics Particles & FieldsCharge radius0103 physical sciencesPhysics::Atomic and Molecular Clustersddc:530NeutronNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsisotoopitScience & TechnologyIsotopeMagnetic moment010308 nuclear & particles physicsPhysicsProton-neutron pairingTABLEHyperfine structure and isotope shiftAtomic mass3. Good healthCharge radiusPhysics NuclearPairingPhysical SciencesSHELL-MODELAtomic physicsydinfysiikkaGround stateskandiumPhysics Letters B
researchProduct

Probing the single-particle behavior above Sn132 via electromagnetic moments of Sb133,134 and N=82 isotones

2021

Magnetic and quadrupole moments of the $7/{2}^{+}$ ground state in $^{133}\mathrm{Sb}$ and the $({7}^{\ensuremath{-}})$ isomer in $^{134}\mathrm{Sb}$ have been measured by collinear laser spectroscopy to investigate the single-particle behavior above the doubly magic nucleus $^{132}\mathrm{Sn}$. The comparison of experimental data of the $7/{2}^{+}$ states in $^{133}\mathrm{Sb}$ and neighboring $N=82$ isotones to shell-model calculations reveals the sensitivity of magnetic moments to the splitting of the spin-orbit partners $\ensuremath{\pi}0{g}_{9/2}$ and $\ensuremath{\pi}0{g}_{7/2}$ across the proton shell closure at $Z=50$. In contrast, quadrupole moments of the $N=82$ isotones are insen…

PhysicsValence (chemistry)Magnetic momentProton010308 nuclear & particles physicsNuclear TheoryCoupling (probability)01 natural sciences0103 physical sciencesQuadrupoleNeutronSensitivity (control systems)Atomic physics010306 general physicsGround statePhysical Review C
researchProduct

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

2021

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

CHARGE RADIIEFFICIENCYProtonScienceSYMMETRYNuclear TheoryGeneral Physics and AstronomyIONIZATION SPECTROSCOPY[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEffective nuclear chargeArticleNuclear physicsCharge radiusMOMENTS0103 physical sciencesexperimental nuclear physicsNeutronNuclear Physics - ExperimentPhysics::Atomic PhysicsBETA-DECAYExperimental nuclear physics010306 general physicsLASER SPECTROSCOPYNuclear ExperimentPhysicsRESONANCE IONIZATIONisotoopitMultidisciplinaryScience & TechnologyIsotope010308 nuclear & particles physicsQGeneral ChemistryRadiusION-SOURCEMultidisciplinary SciencesTheoretical nuclear physicsNeutron numbertheoretical nuclear physicsScience & Technology - Other TopicsISOTOPESDensity functional theoryydinfysiikka
researchProduct

Nuclear Moments of Germanium Isotopes around $N$ = 40

2020

Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 \, ^3P_1 \rightarrow 4s^2 4p 5s \, ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{\rm s}$ = $-$0.198(4) b, in excellent agreement with the literatu…

Nuclear Theory (nucl-th)nucl-thNuclear TheoryNuclear Physics - TheoryFOS: Physical sciencesNuclear Physics - ExperimentPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)nucl-exNuclear Experiment
researchProduct

High-resolution laser spectroscopy of $^{27-32}$Al

2020

Physical review / C 103(1), 014318 (2021). doi:10.1103/PhysRevC.103.014318

isotoopitspektroskopiaFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structurenucl-ex530ddc:530Nuclear Physics - ExperimentalumiiniNuclear Experiment (nucl-ex)Präzisionsexperimente - Abteilung BlaumydinfysiikkaNuclear Experiment
researchProduct