0000000000970796

AUTHOR

Pierre Joliot

showing 1 related works from this author

Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.

2015

International audience; Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies prin…

Aquatic Organismschemistry.chemical_compoundAdenosine TriphosphateSettore BIO/04 - Fisiologia VegetaleCYCLIC ELECTRON FLOWPlastidsPhotosynthesisPHAEODACTYLUM-TRICORNUTUMPlant Proteinschemistry.chemical_classificationMultidisciplinarymicroalgaeRespirationCarbon fixationEnergetic interactionsProton-Motive ForceMitochondriametabolic mutantPhenotypeATP/NADPH ratioOXYGEN PHOTOREDUCTIONCarbon dioxideOxidoreductasesOxidation-ReductionOceanOceans and SeasElectron flowMarine eukaryotesBiologyPhotosynthesisCHLAMYDOMONAS-REINHARDTIICarbon cycleCarbon CycleMitochondrial ProteinsEnergetic exchangesBotanyOrganic matterEcosystem[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPlastidEcosystemDiatomsChemiosmosisfungiECSCarbon Dioxidechemistry13. Climate actionNADP
researchProduct