0000000000970902

AUTHOR

Xuexi Tie

showing 2 related works from this author

Severe Pollution in China Amplified by Atmospheric Moisture

2017

AbstractIn recent years, severe haze events often occurred in China, causing serious environmental problems. The mechanisms responsible for the haze formation, however, are still not well understood, hindering the forecast and mitigation of haze pollution. Our study of the 2012–13 winter haze events in Beijing shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered resulting in the formation of heavy haze: (1) the dispersal of water vapour is cons…

Haze010504 meteorology & atmospheric sciencesPlanetary boundary layerIMPACTlcsh:MedicineAEROSOL OPTICAL-PROPERTIES010501 environmental sciencesXINKENAtmospheric sciences01 natural sciencesArticlePollution in ChinaPLANETARY BOUNDARY-LAYERPARTICLESRelative humiditylcsh:ScienceHAZE0105 earth and related environmental sciencesMultidisciplinaryAtmospheric moistureAIRlcsh:RParticulatesPEARL RIVER-DELTAAerosolCLIMATEMODEL13. Climate actionEnvironmental sciencelcsh:QWater vaporScientific Reports
researchProduct

Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties.

2018

Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) w…

Angstrom exponentChina010504 meteorology & atmospheric sciencesSOLUBLE ORGANIC-CARBONchemistry.chemical_element010501 environmental sciences01 natural sciencesEnvironmental ChemistryWATERPolycyclic Aromatic HydrocarbonsAbsorption (electromagnetic radiation)Chemical composition0105 earth and related environmental sciencesTotal organic carbonAerosolsAir PollutantsANGSTROM EXPONENTGeneral ChemistryCarbon blackOPTICAL-PROPERTIESRadiative forcingCarbonAerosolSOLAR-RADIATIONchemistrySOURCE APPORTIONMENTEnvironmental chemistryBLACK CARBONEnvironmental scienceFINE PARTICULATE MATTERSOUTHEASTERN UNITED-STATESCarbonBIOMASS-BURNING EMISSIONSEnvironmental sciencetechnology
researchProduct