0000000000972677

AUTHOR

C. Veyssiere

showing 15 related works from this author

Journal of High Energy Physics

2014

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics - Instrumentation and DetectorsNeutrino Detectors and TelescopeFOS: Physical sciencesCHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)ExperimentDistortion0103 physical sciencesEnergy spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsMixing (physics)PhysicsNeutrino Detectors and Telescopes010308 nuclear & particles physicsOscillationPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorFunction (mathematics)Instrumentation and Detectors (physics.ins-det)OscillationNeutrinoInstrumentation and Detectors
researchProduct

Recent Borexino results and perspectives of the SOX measurement

2017

International audience; Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics disciplines such as astrophysics (star physics, star formation, etc.), astroparticle and particle physics. Phase II started in 2011 and its aim is to improve the phase I results, in particular the measurements of the neutrino fluxes from the pep and CNO processes. By the end of this year, data taking from the sun will be over…

Sterile neutrinoneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoQC1-999scintillation counter: liquidanomaly[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesStandard ModelNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear fusion010306 general physicsNeutrino oscillationBorexinoPhysicsgallium010308 nuclear & particles physicsStar formationPhysicsstar: formationstabilityneutrino: sterilesensitivityberylliumGran SassoLSNDelectron: lifetimeHigh Energy Physics::ExperimentBorexinoneutrino: oscillationnuclear reactorNeutrinoneutrino: geophysicstalk: Kolymbari 2017/08/17experimental results
researchProduct

SOX: search for short baseline neutrino oscillations with Borexino

2015

International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV(2) mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the det…

HistoryParticle physicsSterile neutrinochromium: nuclidePhysics::Instrumentation and DetectorsSolar neutrino[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyEducationNuclear physicsPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationBorexinoactivity reportPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino: particle sourceSolar neutrino problemneutrino: sterilesensitivityComputer Science ApplicationsNeutrino detector13. Climate actioncerium: nuclideMeasurements of neutrino speedHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrinoantineutrino: particle source
researchProduct

Short distance neutrino oscillations with Borexino

2014

International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two source…

Particle physicsSterile neutrinoneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Solar neutrinoscintillation counter: liquidanomalyneutrino: beam7. Clean energy01 natural sciencesNuclear physicsMiniBooNEPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationBorexinoenergy: lowPhysicsgallium010308 nuclear & particles physicsantineutrino: beamPhysicsDetectorHigh Energy Physics::Phenomenologytalk: Noto 2014/09/30neutrino: sterilecalibrationneutrino: nuclear reactorceriumLSNDradioactivityHigh Energy Physics::ExperimentBorexinoneutrino: familychromiumneutrino: oscillationNeutrinoAnomaly (physics)performanceexperimental results
researchProduct

Precision Muon Reconstruction in Double Chooz

2014

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a thro…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesSTRIPSDouble Chooz; Muon reconstruction; Neutrino detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]CHOOZScintillatorHigh Energy Physics - Experimentlaw.inventionNONuclear physicsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionPhysicsMuonDetectorReconstruction algorithmInstrumentation and Detectors (physics.ins-det)Double ChoozNeutrino detectorPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentMuon reconstruction
researchProduct

Muon capture on light isotopes measured with the Double Chooz detector

2016

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\time…

PhysicsSemileptonic decayParticle physicseducation.field_of_studyMuon010308 nuclear & particles physicsPopulationneutrino physic01 natural sciencesMuon captureNuclear physics13. Climate action0103 physical sciencesHigh Energy Physics::ExperimentNeutronProduction (computer science)Neutrino010306 general physicsGround stateeducation
researchProduct

The $^{144}$Ce source for SOX

2015

International audience; The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the (144)Ce-(144)Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according t…

HistorySterile neutrinoParticle physicsenergy: decay[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Scintillator01 natural sciences7. Clean energyEducationNuclear physicsPhysics and Astronomy (all)0103 physical sciencesddc:530010306 general physicsNeutrino oscillationparticle sourceBorexinoPhysicslifetimenucleusSecular equilibriumneutrino: sterileantineutrinosensitivitySpent nuclear fuelComputer Science ApplicationsGran SassoceriumDecay energyradioactivityBorexinoneutrino: oscillationproductionNeutrino
researchProduct

Conceptual design and infrastructure for the installation of the first AGATA sub-array at LNL

2011

WOS: 000295765100014

Nuclear and High Energy PhysicsDANTE Heavy-ion DetectorPhysics::Instrumentation and DetectorsHELENA multiplicity filter01 natural sciences7. Clean energyParticle detectorNuclear physicsPRISMA spectrometerConceptual design0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment010306 general physicsGamma detectionInstrumentationTRACE SI detectorPhysicsSpectrometer010308 nuclear & particles physicsbusiness.industrySemiconductor detectorCologne plungerAGATAAGATADANTE heavy-ion-detectorbusinessComputer hardwareNuclear Instruments and Methods in Physics Research
researchProduct

CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

2017

International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…

Physicsneutrino: sterile: search forHistorySterile neutrinoParticle physics010308 nuclear & particles physicsInitial activitysensitivity01 natural sciencesComputer Science ApplicationsEducationPHYSICSPhysics and Astronomy (all)cesium0103 physical sciencesOSCILLATIONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexinoproposed experimentNeutrino010306 general physicsantineutrino: particle sourceBorexinotalk: Moscow 2017/10/02
researchProduct

Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement

2015

International audience; Borexino is an unsegmented neutrino detector operating at LNGS in central Italy. The experiment has shown its performances through its unprecedented accomplishments in the solar and geoneutrino detection. These performances make it an ideal tool to accomplish a state- of-the-art experiment able to test the existence of sterile neutrinos (SOX experiment). For both the solar and the SOX analysis, a good understanding of the detector response is fundamental. Consequently, calibration campaigns with radioactive sources have been performed over the years. The calibration data are of extreme importance to develop an accurate Monte Carlo code. This code is used in all the n…

HistoryGeoneutrinoCalibration (statistics)Physics::Instrumentation and DetectorsNuclear engineeringMonte Carlo method01 natural sciencesprogrammingParticle detectorEducationPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSimulationBorexinoPhysics010308 nuclear & particles physicsDetectorneutrino: sterilecalibrationComputer Science::Computers and SocietyComputer Science ApplicationsNeutrino detectorBorexinoHigh Energy Physics::ExperimentNeutrinonumerical calculations: Monte Carloperformance
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

SOX : short distance neutrino oscillations with Borexino

2014

Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…

Sterile neutrinoPhysics::Instrumentation and Detectorsscintillation counter: liquidtalk: Valencia 2014/07/027. Clean energy01 natural sciences[SPI]Engineering Sciences [physics][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BorexinoSterile neutrinogalliumPhysicsOscillationneutrino: sterilesolarceriumBorexinochromiumchromium-51neutrino: geophysicsNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAnomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinosanomalyneutrino/e: beamScintillatorcerium-144Anomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinos; Nuclear and High Energy PhysicsMiniBooNEsterile neutrinos0103 physical sciences010306 general physicsNeutrino oscillation010308 nuclear & particles physicschromium-51cerium-144calibrationGran SassoLSNDAnomalous oscillationSOXneutrino: familyHigh Energy Physics::Experimentnuclear reactorneutrino: oscillationAnomaly (physics)anomalous oscillationsexperimental resultsneutrino/e: oscillation
researchProduct

Solar neutrino detectors as sterile neutrino hunters

2016

International audience; The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a (144)Ce-(144)Pr anti-neutrino source and, possibly in the medium term future, with a (51)Cr neutrino source.

HistorySterile neutrinoParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena01 natural sciences7. Clean energyEducationPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationnuclideBorexinoPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemneutrino: sterileComputer Science ApplicationspraseodymiumGran Sassoneutrino: detectorNeutrino detectorcerium: nuclideHigh Energy Physics::Experimentneutrino: oscillationNeutrino astronomyNeutrinoantineutrino: particle source[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors

2011

WOS: 000290082600015

Nuclear and High Energy PhysicsFusion-evaporation ReactionsPhysics::Instrumentation and Detectorsg-ray trackingAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEvaporationRay tracking[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesParticle detectorNuclear physicsAGATA Fusion-evaporation reactions HPGe detectors Monte Carlo Simulation Ray tracking; Computer simulation Evaporation Monte Carlo methods Phase transitions; DetectorsHPGe Detectors0103 physical sciencesNuclear Experiment010306 general physicsInstrumentationGamma-ray TrackingPhysics010308 nuclear & particles physics4. EducationResolution (electron density)DetectorMonte Carlo SimulationMonte Carlo methodsDetectorsComputer simulationSemiconductor detectorPhase transitionsMonte Carlo SimulationsMeasuring instrumentHigh Energy Physics::ExperimentAGATAAGATABeam (structure)
researchProduct