0000000000973168

AUTHOR

H. Berk

showing 1 related works from this author

Overview of the JET results with the ITER-like wall

2013

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

Nuclear and High Energy PhysicsMaterials scienceREGIMENuclear engineeringchemistry.chemical_element-Condensed Matter PhysicEffective radiated powerTungstenNuclear and High Energy Physics; Condensed Matter PhysicsPedestalPLASMA-FACING COMPONENTSTOKAMAK PLASMASJet (fluid)TUNGSTENDivertorperfomancePlasmaPERFORMANCECondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistryBeta (plasma physics)DIVERTORBerylliumAtomic physics
researchProduct