0000000000975076

AUTHOR

Esmeralda Martí

showing 1 related works from this author

Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells

2012

Plant aminopropyltransferases consist of a group of enzymes that transfer aminopropyl groups derived from decarboxylated S-adenosyl-methionine (dcAdoMet or dcSAM) to propylamine acceptors to produce polyamines, ubiquitous metabolites with positive charge at physiological pH. Spermidine synthase (SPDS) uses putrescine as amino acceptor to form spermidine, whereas spermine synthase (SPMS) and thermospermine synthase (TSPMS) use spermidine as acceptor to synthesize the isomers spermine and thermospermine respectively. In previous work it was shown that both SPDS1 and SPDS2 can physically interact with SPMS although no data concerning the subcellular localization was reported. Here we study the…

Macromolecular AssembliesProteomicsS-AdenosylmethioninePlant anatomyImmunohistoquímicaArabidopsislcsh:MedicineSecondary MetabolismSpermineExpressionPlant ScienceSpermidine synthaseBiochemistrychemistry.chemical_compoundBimolecular fluorescence complementationCytosolMolecular Cell BiologyPolyaminesPlant Genomicslcsh:SciencePlant Growth and DevelopmentMultidisciplinarybiologyPlant BiochemistryArabidopsis-ThalianaGenomicsImmunohistochemistryMetabolismeFunctional GenomicsBiochemistrySpermine synthasePlant proteinPlant PhysiologyMechanismResearch ArticleHistologyAcyltransferasePlant Cell BiologyActive Transport Cell NucleusSpermidine SynthaseBimolecular fluorescence complementationProtein InteractionsBiologyCell NucleusCrystal-Structurelcsh:RHistologiaBotanyProtein interactionsSubcellular localizationAnatomia vegetalExpressió gènicaMolecular WeightSpermidineMetabolismchemistryDecarboxylasebiology.proteinPutrescineBotànicalcsh:QGene expressionSpermidine synthase
researchProduct