0000000000977459

AUTHOR

Ottavia Jedrkiewicz

X-shaped space-time coherence in optical parametric generation

We study the spatiotemporal coherence properties of superfluorescence radiation generated in optical parametric amplification of quantum noise. We show that the angular dispersion properties of the spatiotemporal spectra, measured in different phase-matching conditions, lead to a clear X-shaped structure of the mutual correlation function of the radiation. Within a statistical picture, we interpret the generated superfluorescence as a stochastic “gas” of quasistationary modes characterized by a skewed correlation in the spatiotemporal domain, with characteristics similar to linear and nonlinear X waves not describable within a separable approach in space and time.

research product

Emergence of X-Shaped Spatiotemporal Coherence in Optical Waves

Considering the problem of parametric nonlinear interaction, we report the experimental observation of electromagnetic waves characterized by an X-shaped spatiotemporal coherence; i.e., coherence is neither spatial nor temporal, but skewed along specific spatiotemporal trajectories. The application of the usual, purely spatial or temporal, measures of coherence would erroneously lead to the conclusion that the field is fully incoherent. Such hidden coherence has been identified owing to an innovative diagnostic technique based on simultaneous analysis of both the spatial and temporal spectra.

research product

Experimental evidence of X-shaped spatiotemporal coherence of superfluorescence radiation

Considering the parametric generation process in a quadratic nonlinear crystal, we report the experimental observation of optical waves characterized by a X-shaped spatiotemporal coherence, i.e. a coherence skewed along spatiotemporal trajectories.

research product