0000000000981301

AUTHOR

A. Kleymenova

showing 4 related works from this author

Synchronization of the distributed readout frontend electronics of the Baby MIND detector

2017

Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test.

Physics::Instrumentation and DetectorsComputer sciencebusiness.industryDetectorReadout electronicsSynchronizationNeutrino detectorBackplaneNuclear electronicsHigh Energy Physics::ExperimentElectronicsbusinessDownstream (networking)Computer hardware
researchProduct

Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

2017

T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energy030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineSilicon photomultiplierOptics0103 physical sciencesDetectors and Experimental TechniquesNeutrino oscillationphysics.ins-detInstrumentationMathematical PhysicsPhysicsMuon010308 nuclear & particles physicsbusiness.industryDetectorInstrumentation and Detectors (physics.ins-det)Neutrino detectorHigh Energy Physics::ExperimentLarge scale cryogenic liquid detectors [8]NeutrinobusinessJournal of Instrumentation
researchProduct

Baby MIND: A Magnetised Spectrometer for the WAGASCI Experiment

2017

The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshep-exAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics::ExperimentDetectors and Experimental TechniquesLarge scale cryogenic liquid detectors [8]physics.ins-detParticle Physics - Experiment
researchProduct

Baby MIND Experiment Construction Status

2017

Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)Detectors and Experimental TechniquesLarge scale cryogenic liquid detectors [8]physics.ins-det
researchProduct