0000000000981322

AUTHOR

G. Vankova-kirilova

showing 10 related works from this author

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Synchronization of the distributed readout frontend electronics of the Baby MIND detector

2017

Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test.

Physics::Instrumentation and DetectorsComputer sciencebusiness.industryDetectorReadout electronicsSynchronizationNeutrino detectorBackplaneNuclear electronicsHigh Energy Physics::ExperimentElectronicsbusinessDownstream (networking)Computer hardware
researchProduct

Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

2017

T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energy030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineSilicon photomultiplierOptics0103 physical sciencesDetectors and Experimental TechniquesNeutrino oscillationphysics.ins-detInstrumentationMathematical PhysicsPhysicsMuon010308 nuclear & particles physicsbusiness.industryDetectorInstrumentation and Detectors (physics.ins-det)Neutrino detectorHigh Energy Physics::ExperimentLarge scale cryogenic liquid detectors [8]NeutrinobusinessJournal of Instrumentation
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct

Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

2014

The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. It is hoped that this will allow for the current proposal to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020. The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on t…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsGeneral infrastructure for test beam and irradiation lines [8.5]Improvement and equipment of irradiation and test beam lines [8]FOS: Physical sciencesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)Detectors and Experimental TechniquesHigh Energy Physics - Experiment
researchProduct

Baby MIND: A Magnetised Spectrometer for the WAGASCI Experiment

2017

The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshep-exAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics::ExperimentDetectors and Experimental TechniquesLarge scale cryogenic liquid detectors [8]physics.ins-detParticle Physics - Experiment
researchProduct

LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

2014

In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\times 6\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physics - Experiment
researchProduct

Baby MIND Experiment Construction Status

2017

Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)Detectors and Experimental TechniquesLarge scale cryogenic liquid detectors [8]physics.ins-det
researchProduct