0000000000982038

AUTHOR

S. G. Jennings

showing 2 related works from this author

Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

2014

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…

Atmospheric Science010504 meteorology & atmospheric sciencesParticle numbergeneral-circulation modelmixing state010501 environmental sciencesEnvironmentclimate modelblack carbonAtmospheric sciences01 natural sciencesTropospherelcsh:ChemistryZeppelinobservatorietUrban Developmentddc:550Cloud condensation nucleiBuilt Environmentnumber size distributionsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesMicrophysicsparticle formationEarth / EnvironmentalCloud physicsatmospheric aerosolCAS - Climate Air and SustainabilityRadiative forcinglcsh:QC1-999Aerosolcloud condensation nucleimarine boundary-layerlcsh:QD1-99913. Climate actionClimatologyEnvironmental scienceClimate modelELSS - Earth Life and Social Sciencesoff-line modellcsh:Physics
researchProduct

Quantification of Coastal New Ultra-Fine Particles Formation from In situ and Chamber Measurements during the BIOFLUX Campaign

2005

Environmental Context. Secondary processes leading to the production of ultra-fine particles by nucle- ation are still poorly understood. A fraction of new particles formed can grow into radiatively active sizes, where they can directly scatter incoming solar radiation and, if partly water soluble, contribute to the cloud condensation nuclei population. New particle formation events have been frequently observed at the Mace Head Atmospheric Research Station (western Ireland), under low tide and sunny conditions, leading to the hypothesis that new particles are formed from iodo-species emitted from macroalgae. Abstract. New particle formation processes were studied during the BIOFLUX campaig…

education.field_of_studyChemistryPopulationFluorescence spectrometryAnalytical chemistryContext (language use)AerosolGeochemistry and PetrologyChemistry (miscellaneous)Environmental chemistryUltrafine particleEnvironmental ChemistryCloud condensation nucleiParticleDispersion (chemistry)educationEnvironmental Chemistry
researchProduct