0000000000982462

AUTHOR

R. Santorelli

showing 16 related works from this author

Journal of High Energy Physics

2014

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics - Instrumentation and DetectorsNeutrino Detectors and TelescopeFOS: Physical sciencesCHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)ExperimentDistortion0103 physical sciencesEnergy spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsMixing (physics)PhysicsNeutrino Detectors and Telescopes010308 nuclear & particles physicsOscillationPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorFunction (mathematics)Instrumentation and Detectors (physics.ins-det)OscillationNeutrinoInstrumentation and Detectors
researchProduct

Likelihood approach to the first dark matter results from XENON100

2011

Many experiments that aim at the direct detection of Dark Matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the Profile Likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or …

PhysicsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Scale (ratio)010308 nuclear & particles physicsMonte Carlo methodDark matterFOS: Physical sciencesStatistical model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Frequentist inferenceWeakly interacting massive particles0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Test statisticLimit (mathematics)Statistical physics010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Precision Muon Reconstruction in Double Chooz

2014

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a thro…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesSTRIPSDouble Chooz; Muon reconstruction; Neutrino detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]CHOOZScintillatorHigh Energy Physics - Experimentlaw.inventionNONuclear physicsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionPhysicsMuonDetectorReconstruction algorithmInstrumentation and Detectors (physics.ins-det)Double ChoozNeutrino detectorPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentMuon reconstruction
researchProduct

Muon capture on light isotopes measured with the Double Chooz detector

2016

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\time…

PhysicsSemileptonic decayParticle physicseducation.field_of_studyMuon010308 nuclear & particles physicsPopulationneutrino physic01 natural sciencesMuon captureNuclear physics13. Climate action0103 physical sciencesHigh Energy Physics::ExperimentNeutronProduction (computer science)Neutrino010306 general physicsGround stateeducation
researchProduct

Erratum: Study of the electromagnetic background in the XENON100 experiment [Phys. Rev. D 83, 082001 (2011)]

2012

Nuclear physicsPhysicsNuclear and High Energy PhysicsDark matterParticle detectorPhysical Review D
researchProduct

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct

Dark Matter Results from 100 Live Days of XENON100 Data

2011

We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter interact…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Large Underground Xenon experiment010308 nuclear & particles physicsDARK MATTERDark matterHadronFOS: Physical sciencesGeneral Physics and AstronomyElementary particleFermion01 natural sciencesParticle detectorHigh Energy Physics - ExperimentWIMPSNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONWIMP0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TPC010306 general physicsNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Material screening and selection for XENON100

2011

Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.

PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsGamma rayLow activityFOS: Physical sciencesAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Mass spectrometry01 natural sciencesSemiconductor detectorNuclear physics0103 physical sciencesMass spectrum[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsGamma ray spectrometryUltra sensitive
researchProduct

Implications on inelastic dark matter from 100 live days of XENON100 data

2011

The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three events have been found in the predefined signal region, compatible with the background prediction of (1.8 \pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsScatteringDARK MATTERSignal regionDark matterFOS: Physical sciences01 natural sciencesWIMPSNuclear physicsXENON0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TPC010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Production and characterization of a custom-made 228Th source with reduced neutron source strength for the Borexino experiment

2012

A custom-made 228Th source of several MBq activity was produced for the Borexino experiment for studying the external background of the detector. The aim was to reduce the unwanted neutron emission produced via (alpha,n) reactions in ceramics used typically for commercial 228Th sources. For this purpose a ThCl4 solution was converted chemically into ThO2 and embedded into a gold foil. The paper describes the production and the characterization of the custom-made source by means of gamma-activity, dose rate and neutron source strength measurements. From gamma-spectroscopic measurements it was deduced that the activity transfer from the initial solution to the final source was >91% (at 68%…

PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsDosimeterIsotope530 PhysicsNeutron emission3105 InstrumentationRadiochemistryFOS: Physical sciencesThoriumchemistry.chemical_elementInstrumentation and Detectors (physics.ins-det)10192 Physics InstituteNuclear physicschemistryMeasuring instrumentNeutron source3106 Nuclear and High Energy PhysicsInstrumentationBorexinoIsotopes of thoriumNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Erratum: Search for Light Dark Matter in XENON10 Data [Phys. Rev. Lett.107, 051301 (2011)]

2013

PhysicsDark matterGeneral Physics and AstronomyAstrophysicsLight dark matterParticle detectorPhysical Review Letters
researchProduct

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

2019

We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptio…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesElectron7. Clean energy01 natural sciencesPartícules (Física nuclear)Hamiltonian systemNeutrino massRelic neutrino0103 physical sciencesTransverse drift filter010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PTOLEMYPhysicsMagnetic moment010308 nuclear & particles physicsCNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filterInstrumentation and Detectors (physics.ins-det)CNBFilter (signal processing)CNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filter; Nuclear and High Energy PhysicsComputational physicsEnergy conservationHarmonicAstrophysics - Instrumentation and Methods for AstrophysicsNeutrino maEnergy (signal processing)Cosmic Neutrino BackgroundVoltageProgress in Particle and Nuclear Physics
researchProduct

LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

2014

In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\times 6\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physics - Experiment
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

A search for light dark matter in XENON10 data

2011

We report results of a search for light (3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LightDark matterGeneral Physics and AstronomyFOS: Physical sciencesElectronsElementary particleElectron01 natural sciencesParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHumansScattering Radiation010306 general physicsLight dark matterNuclear PhysicsPhysicsPhotons010308 nuclear & particles physicsScatteringFermionBaryonHigh Energy Physics - PhenomenologyData Interpretation StatisticalCosmic RadiationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Study of the electromagnetic background in the XENON100 experiment

2011

The XENON100 experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. We present a comprehensive study of the predicted electronic recoil background coming from radioactive decays inside the detector and shield materials, and intrinsic contamination. Based on GEANT4 Monte Carlo simulations using a detailed geometry together with the measured radioactivity of all detector components, we predict an electronic recoil background in the WIMP-search energy range (0-100 keV) in the 30 kg fiducial mass of less than 10e-2 events/(kg-day-keV), co…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsMonte Carlo methodDark matterchemistry.chemical_elementFOS: Physical sciences01 natural sciences7. Clean energyParticle detectorNuclear physicsXenonRecoil0103 physical sciences010306 general physicsNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsElastic scattering010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]chemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsRadioactive decayAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct