0000000000985431

AUTHOR

Shijie Zheng

0000-0003-2256-6286

showing 2 related works from this author

The enhanced X-ray Timing and Polarimetry mission—eXTP

2019

In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to det…

Gravity (chemistry)Computer sciencespace mission: eXTPX-ray timingPolarimetryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyPhysics and Astronomy (all)Settore FIS/05 - Astronomia E AstrofisicaObservatoryX-ray instrumentation0103 physical sciencesX-ray polarimetryGround segmentAerospace engineering010306 general physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)High Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftsezelebusiness.industryPayloadGravitational waveAstrophysics::Instrumentation and Methods for Astrophysicsspace mission: eXTP; X-ray instrumentation; X-ray polarimetry; X-ray timing; Physics and Astronomy (all)Space SciencebusinessAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Dense matter with eXTP

2019

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

GAMMA-RAY PULSARSdense matterAstrophysics::High Energy Astrophysical PhenomenaPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsNeutronBRIGHTNESS OSCILLATIONS7. Clean energy01 natural sciencesINNER ACCRETION DISKSSpectral lineX-raydense matter; equation of state; neutron; X-rays; Physics and Astronomy (all)Physics and Astronomy (all)Equacions d'estatneutronPulsar0103 physical sciencesMILLISECOND PULSARSX-raysNEUTRON-STARRADIUS CONSTRAINTS010306 general physics010303 astronomy & astrophysicsRELATIVISTIC IRON LINEequation of statePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)LIGHT CURVESNeutronsEquation of stateQUASI-PERIODIC OSCILLATIONSX-RaysStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsEQUATION-OF-STATEAccretion (astrophysics)Neutron star:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Raigs XAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaDense matterDense matter
researchProduct