0000000000985964
AUTHOR
C Meneghini
(2010). Microstructure and magnetic properties of colloidal cobalt nano-clusters.
The magnetic response of nanometer sized Co nanoparticles (NP) prepared using reverse micelle solutions are presented. The use of complementary structural and morphological probes (like transmission electron microscopy, high resolution electron microscopy, X-ray absorption spectroscopy) allowed to relate the magnetic properties to the size, morphology, composition and atomic structure of the nanoparticles. All data agree on the presence of a core–shell structure of NPs made of a metallic Co core surrounded by a thin Co-oxide layer. The core–shell microstructure of NPs affects its magnetic response mainly raising the anisotropy constant.
Magnetic properties of colloidal cobalt nanoclusters
Abstract. Co nanoclusters were synthesized by an inverse-micelle chemical route. The magnetic and microstructural properties of the nanoparticles have been analyzed as a function of the surfactant (AOT and DEHP) and the drying method. Microstructural analysis has been performed by TEM and XANES; magnetic properties have been studied by hysteresis loops and zero-field cooling - field cooling (ZFC-FC) curves. TEM images show 2 to 4 nm sized particles spherical in shape. XANES measurements point out a significant presence of Co3O4 with metallic Co and some Co2+ bound to the surfactant. The presence of antiferromagnetic Co3O4 explains the magnetic transition observed at low T in both ZFC-FC mea…