0000000000986091

AUTHOR

Martin Seilmayer

showing 1 related works from this author

Magnetic field dynamos and magnetically triggered flow instabilities

2017

The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flow…

F300FOS: Physical sciencesF5007. Clean energy01 natural sciencesInstability010305 fluids & plasmasPhysics - GeophysicsMagnetorotational instability0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drive[NLIN]Nonlinear Sciences [physics]010306 general physicsPhysics[PHYS]Physics [physics]Fluid Dynamics (physics.flu-dyn)MechanicsPhysics - Fluid Dynamics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Magnetic fieldGeophysics (physics.geo-ph)Shear (sheet metal)Flow (mathematics)Dynamo theory[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Dynamo
researchProduct