0000000000986309

AUTHOR

Alain Burgisser

0000-0002-9263-622x

An expansion–coalescence model to track gas bubble populations in magmas

Abstract We propose a kinetic model that statistically describes the growth by decompression, exsolution and coalescence of a polydisperse population of gas bubbles in a silicate melt. The model is homogeneous in space and its main variable is a distribution function representing the probability to find a bubble of volume v and mass m at time t. The volume and mass growth rates are described by a simplification of the classical monodisperse bubble growth model. This simplification, which shortens computational time, removes the coupling between mass evolution and an advection–diffusion equation describing the behavior of the volatile concentration in the melt. We formulate three coalescence…

research product

The percolation threshold and permeability evolution of ascending magmas

Abstract The development of gas permeability in magmas is a complex phenomenon that directly influences the style of a volcanic eruption. The emergence of permeability is linked to the concept of percolation threshold, which is the point beyond which gas bubbles are connected in a continuous network that allows gas escape. Measurements of the percolation threshold, however, range from ∼30 to 78 vol%. No known combination of parameters can explain such a wide range of threshold values, which affects our understanding of the relationship between percolation and permeability. We present permeability calculations on bubble-bearing rhyolitic melts that underwent experimental decompression. Sampl…

research product

Generation of CO2-rich melts during basalt magma ascent and degassing

International audience; To test mechanisms of basaltic ma gma degassing, continuous decompressions of volatile-bearing (2.7-3.8 wt% H2O, 600-1300 ppm CO2) Stromboli melts were performed from 250-200 to 50-25 MPa at 1180-1140°C. Ascent rates were varied from 0.25 to ~ 1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106/cm3, similar to Stromboli pumices. Vesicularities range from 0 to ~ 20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges ha…

research product