0000000000988872

AUTHOR

Patrick Lombard

showing 1 related works from this author

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

2014

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell siz…

Small RNARNA methylationBiologyNSun2MethylationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMisuMice0302 clinical medicineRNA TransferGene expressionAnimalsHumans5‐methylcytidine ; Misu ; Nsun2 ; Rna ModificationMolecular Biology030304 developmental biology5-methylcytidineRegulation of gene expression0303 health sciencesTRNA methylationGeneral Immunology and MicrobiologyGeneral NeuroscienceGene Expression ProfilingRNABrainArticlesMethylationMethyltransferasesRibonuclease PancreaticRNA modificationMolecular biologyOxidative StressGene Expression RegulationTransfer RNANervous System Diseases030217 neurology & neurosurgery5‐methylcytidine
researchProduct