0000000000989859

AUTHOR

Lukas Fajt

showing 6 related works from this author

Results of the search for neutrinoless double-βdecay inMo100with the NEMO-3 experiment

2015

The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $\beta$ ($0\nu\beta\beta$) decay. We report final results of a search for $0\nu\beta\beta$ decays with $6.914$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$\cdot$yr. We perform a detailed study of the expected background in the $0\nu\beta\beta$ signal region and find no evidence of $0\nu\beta\beta$ decays in the data. The level of observed background in the $0\nu\beta\beta$ signal region $[2.8-3.2]$ MeV is $0.44 \pm 0.13$ counts/yr/kg, and no events are obs…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsSignal region01 natural sciencesBeta decayLower limitNuclear physicsMAJORANADouble beta decay0103 physical sciencesUnderground laboratoryBeta (velocity)Neutrino010306 general physicsPhysical Review D
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …

Particle physicsS029MTPhysics and Astronomy (miscellaneous)FOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exinvariance: Lorentz01 natural sciences7. Clean energyneutrinoless double beta decaydecay modesPhysics Particles & Fieldsdouble-beta decay: (0neutrino)SEARCHDouble beta decay0103 physical sciencesground stateNuclear Experiment (nucl-ex)010306 general physics0206 Quantum PhysicsEngineering (miscellaneous)Nuclear ExperimentMajoronS076H2NPhysicsScience & TechnologyHALF-LIFE010308 nuclear & particles physicsPhysicsMO-100High Energy Physics::PhenomenologyNuclear & Particles PhysicsMajoronviolation: Lorentznucleus: transitionSTATESstatisticsPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsspectralelectron: energy spectrumHigh Energy Physics::ExperimentNeutrinoGround stateEnergy (signal processing)Radioactive decayLepton
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct