0000000000991509

AUTHOR

Jari Niemi

showing 1 related works from this author

Functional Brain Segmentation Using Inter-Subject Correlation in fMRI

2016

The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily‐life situations. A new exploratory data‐analysis approach, functional segmentation inter‐subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is h…

Time FactorsComputer science0302 clinical medicinetoiminnallinen magneettikuvausImage Processing Computer-AssistedCluster AnalysisSegmentationResearch Articlesinter-subject variabilityBrain Mappingshared nearest-neighborgraphmedicine.diagnostic_test05 social sciencesBrainHuman brainMiddle AgedMagnetic Resonance Imagingmedicine.anatomical_structurefunctional segmentationGaussian mixture modelGraph (abstract data type)/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beinginter-subject correlationAlgorithmsAdultshared nearest-neighbor graphModels NeurologicalSensory system050105 experimental psychology03 medical and health sciencesYoung AdultNeuroimagingSDG 3 - Good Health and Well-beingmedicineHumans0501 psychology and cognitive sciencesComputer SimulationCluster analysishuman brainCommunicationbusiness.industryMagnetic resonance imagingPattern recognitionfunctional magnetic resonance imagingOxygenAffinity propagationnaturalistic stimulationArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct