A First Principles Study on Charge Dependent Diffusion of Point Defects in Rutile TiO2
A first principles theoretical study on the diffusion mechanism of Ti interstitials and O vacancies in rutile TiO2 is reported. We find that the diffusion depends strongly on the defect charge. Wea...
Adsorption and diffusion of a molybdenum atom on theTiO2(110)surface: A first-principles study
A study on the structure and energetics of a single molybdenum atom adsorbed on the $\mathrm{Ti}{\mathrm{O}}_{2}(110)$ surface is reported. All possible adsorption sites have been determined. Moreover, it is found that incorporation of the Mo atom into the first surface layer leads to considerably more stable structures than on any adsorption site. Different channels for migration of the molybdenum atom have been identified. The diffusion barriers of these channels have been determined. The results on structure and energetics are discussed by analyzing the electronic properties of the $\mathrm{Mo}∕\mathrm{Ti}{\mathrm{O}}_{2}(110)$ systems.
Adsorption of 3d Transition Elements on a TiO2(110) Surface.
International audience; A first-principles study on the adsorption of 3d transition metal atoms on a stoichiometric TiO2(110) surface is reported. For all 3d elements except Cu, the most stable on-surface adsorption site is a site where the adatom binds to two twofold and one threefold surface oxygen atoms. For Ti, V, and Cr, however, a subsurface site, where the adatom substitutes a sixfold Ti atom, is more stable. The adatoms are oxidized in all cases. The charge transfer to the substrate is larger for the substitutional site than for the on-surface adsorption sites and decreases with atomic number along the 3d series. The relative stabilities of the adsorption sites are discussed in term…