0000000001001066

AUTHOR

Germán Sierra

showing 1 related works from this author

Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian

2019

Understanding the robustness of topological phases of matter in the presence of interactions poses a difficult challenge in modern condensed matter, showing interesting connections to high energy physics. In this work, we leverage these connections to present a complete analysis of the continuum long-wavelength description of a generic class of correlated topological insulators: Wilson-Hubbard topological matter. We show that a Wilsonian renormalization group (RG) approach, combined with the so-called topological Hamiltonian, provide a quantitative route to understand interaction-induced topological phase transitions that occur in Wilson-Hubbard matter. We benchmark two-loop RG predictions …

PhysicsPhase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciences02 engineering and technologyRenormalization group021001 nanoscience & nanotechnologyTopology01 natural sciencesMatrix multiplicationsymbols.namesakeCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Topological insulator0103 physical sciencessymbolsddc:530Quantum Physics (quant-ph)010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)Condensed Matter - Quantum Gases
researchProduct