0000000001001508

AUTHOR

E. Pointecouteau

showing 2 related works from this author

ORIGIN: metal creation and evolution from the cosmic dawn

2012

Herder, Jan-Willem den et al.

HOT INTERGALACTIC MEDIUMUNIVERSEChemical evolutionMission7. Clean energy01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisica010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NUCLEOSYNTHESISCOSMIC cancer databaseClusters of galaxiesSatellite MissionEpoch (reference date)Astrophysics::Instrumentation and Methods for AstrophysicsFORESTGALAXIESGamma-ray burstsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray Mission Gamma-ray bursts Clusters of galaxies Warm-hot intergalactic medium Chemical evolutionWarm-hot intergalactic mediumAstrophysics - Cosmology and Nongalactic AstrophysicsAstrophysics and AstronomyStructure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)Clusters of galaxiemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsX-ray Mission Gamma-ray bursts Clusters of galaxies Warm-hot intergalactic medium Chemical evolutionABSORPTION-SPECTRA010309 opticsX-rayYIELDS0103 physical sciencesGamma-ray burstInstrumentation and Methods for Astrophysics (astro-ph.IM)X-ray; Mission; Gamma-ray bursts; Clusters of galaxies; Warm-hot intergalactic medium; Chemical evolutionAstronomyAstronomy and AstrophysicsRedshiftGalaxyUniverse13. Climate actionChemical evolution; Clusters of galaxies; Gamma-ray bursts; Mission; Warm-hot intergalactic medium; X-ray; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary ScienceGamma-ray burstCLUSTERSExperimental Astronomy
researchProduct

The universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample

2018

The hot plasma in galaxy clusters is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cluster's potential well as well as non-gravitational processes such as gas cooling, AGN feedback and kinetic energy. In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct