Coulomb blockade-based nanothermometry in strong magnetic fields
We have performed experiments to test for the susceptibility to strong magnetic fields of electron tunneling in normal metal -based nanostructures for Coulomb blockade primary thermometry. We have confirmed that, to within our accuracy of about ±1%, the single electron charging -induced zero bias differential resistance maximum is unaffected by the field up to 23 T at temperatures of 0.4–4.2 K. We discuss the simple theoretical basis of this immunity. We also report on the practical limitation at low temperatures imposed by superconductivity of aluminium in small magnetic fields.