0000000001004164
AUTHOR
Eija Laukkarinen
showing 4 related works from this author
Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals
2020
Abstract We consider Malliavin smoothness of random variables f ( X 1 ) , where X is a pure jump Levy process and the function f is either bounded and Holder continuous or of bounded variation. We show that Malliavin differentiability and fractional differentiability of f ( X 1 ) depend both on the regularity of f and the Blumenthal–Getoor index of the Levy measure.
A note on Malliavin smoothness on the Lévy space
2017
We consider Malliavin calculus based on the Itô chaos decomposition of square integrable random variables on the Lévy space. We show that when a random variable satisfies a certain measurability condition, its differentiability and fractional differentiability can be determined by weighted Lebesgue spaces. The measurability condition is satisfied for all random variables if the underlying Lévy process is a compound Poisson process on a finite time interval. peerReviewed
Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals
2020
We consider Malliavin smoothness of random variables f(X1), where X is a purejump Lévy process and the functionfis either bounded and Hölder continuousor of bounded variation. We show that Malliavin differentiability and fractional differentiability off (X1) depend both on the regularity offand the Blumenthal-Getoor index of the Lévy measure. peerReviewed
Malliavin smoothness on the L\'evy space with H\"older continuous or $BV$ functionals
2018
We consider Malliavin smoothness of random variables $f(X_1)$, where $X$ is a pure jump L\'evy process and $f$ is either bounded and H\"older continuous or of bounded variation. We show that Malliavin differentiability and fractional differentiability of $f(X_1)$ depend both on the regularity of $f$ and the Blumenthal-Getoor index of the L\'evy measure.