0000000001005556

AUTHOR

N. Bernsten

showing 2 related works from this author

The mechanically activated combustion reaction in the Fe–Si system: in situ time-resolved synchrotron investigations

2002

Mechanical high-energy ball milling of Fe+2Si elemental powder mixtures was used to activate self sustaining combustion reaction in the case of iron disilicide synthesis. The reaction path as well as the influence of the microstructural parameters on phase transformation have been investigated in detail. Time-resolved X-ray diffraction (TRXRD) using the fast recording kinetics offered by the synchrotron radiation was coupled to an infrared camera in order to study the internal structure of the combustion wave. The crystallite size and the amount of mechanically induced phases play an important role during the combustion; the reaction path and the end product composition mainly depend on the…

DiffractionMaterials scienceInfraredMechanical EngineeringMetals and AlloysSynchrotron radiationGeneral ChemistryCombustionSynchrotronlaw.inventionCrystallographyChemical engineeringMechanics of MaterialslawPhase (matter)Materials ChemistryCrystalliteBall millIntermetallics
researchProduct

The mechanically activated combustion reaction in the Fe-Si system : in situ time-resolved synchrotron investigation

2002

[CHIM.MATE] Chemical Sciences/Material chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][CHIM.MATE]Chemical Sciences/Material chemistry[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
researchProduct