0000000001012364
AUTHOR
Maciej Balajewicz
Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-diffusion Models
American options can be priced by solving linear complementary problems (LCPs) with parabolic partial(-integro) differential operators under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. These operators are discretized using finite difference methods leading to a so-called full order model (FOM). Here reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD) and non negative matrix factorization (NNMF) in order to make pricing much faster within a given model parameter variation range. The numerical experiments demonstrate orders of magnitude faster pricing with ROMs. peerReviewed
Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models
Abstract European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like the Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD). The early exercise constraint of American options is enforced by a penalty on subset of grid points. The presented numerical experiments demonstrate that pricing with ROMs can be orders of magnitude faster within a give…
Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models
European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like the Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD). The early exercise constraint of American options is enforced by a penalty on subset of grid points. The presented numerical experiments demonstrate that pricing with ROMs can be orders of magnitude faster within a given model p…