0000000001012853
AUTHOR
Antonio Madroñero
An Approach on the Hydrogen Absorption in Carbon Black after Gamma Irradiation
In this work, different samples of an industrial carbon black are used to study the hydrogen intake from an over pres-surized atmosphere and its changes due to alteration of its level of crystallinity produced by ¿-irradiation. The monitor-ing of the hydrogen adsorption was made by means of thermogravimetric analysis and by measurements of some elec-trical parameters as the Seebeck coefficient. X-ray diffraction shows that the irradiation diminishes the level of crystal-line perfection. These results show interesting possibilities to use carbon black as cheap hydrogen absorbers.
Changes in the thermoelectric response of vitreous carbon due to the irradiation by γ-rays
In order to study variations in the thermoelectric properties, some commercial glassy carbon samples were subjected to a sequence of steps consisting of a combination of irradiation with γ-rays produced by radioisotopes 60Co, and hydrogen adsorption when the samples were put in an over pressured atmosphere of this gas. With this procedure it was possible to observe that the irradiation decreases the electrical conductivity of glassy carbon samples and the hydrogenation changes the sign of Seebeck coefficient. The material initially is an n-type semiconductor, but with hydrogenation changes to p-type semiconductor. X-ray diffraction analysis showed that the hydrogenated vitreous carbon is mo…
Effects of Gamma Irradiation on the Kinetics of the Adsorption and Desorption of Hydrogen in Carbon Microfibres
In this study, three types of carbon fibres were used, they were ex-polyacrylonitrile carbon fibres with high bulk modulus, ex-polyacrylonitrile fibres with high strength, and vapour grown carbon fibres. All the samples were subjected to a hydrogen adsorption process at room temperature in an over-pressured atmosphere of 25 bars. The adsorption process was monitored through electrical resistivity measurements. As conditioning of the fibres, a chemical activation by acid etching followed by ¿-ray irradiation with 60Co radioisotopes was performed. The surface energy was deter-mined by means of the sessile drop test. Both conditioning treatments are supplementary; the chemical activation works…
Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers
Abstract Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditi…