A Statistical Analysis of the Nuclear Structure Uncertainties in $$\mu $$D
The charge radius of the deuteron (D), was recently determined to three times the precision compared with previous measurements using the measured Lamb shift in muonic deuterium (\(\mu \)D). However, the \(\mu \)D value is 5.6 \(\sigma \) smaller than the world averaged CODATA-2014 value (Pohl R et al. (2016) Science 353:669 [1]). To shed light on this discrepancy we analyze the uncertainties of the nuclear structure calculations of the Lamb shift in \(\mu \)D and conclude that nuclear theory uncertainty is not likely to be the source of the discrepancy.