0000000001020779

AUTHOR

Peizhe Cheng

showing 1 related works from this author

A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion

2015

Collaborative Filtering (CF) is one of the most successful algorithms in recommender systems. However, it suffers from data sparsity and scalability problems. Although many clustering techniques have been incorporated to alleviate these two problems, most of them fail to achieve further significant improvement in recommendation accuracy. First of all, most of them assume each user or item belongs to a single cluster. Since usually users can hold multiple interests and items may belong to multiple categories, it is more reasonable to assume that users and items can join multiple clusters (groups), where each cluster is a subset of like-minded users and items they prefer. Furthermore, most of…

ta113Information retrievalComputer sciencebusiness.industrydata miningRecommender systemcomputer.software_genreTheoretical Computer ScienceInformation fusionKnowledge baseArtificial IntelligenceCollaborative FilteringScalabilityCluster (physics)Collaborative filteringLearning to rankData miningrecommender systemsCluster analysisbusinesscomputercluster analysisACM Transactions on Intelligent Systems and Technology
researchProduct