0000000001020927

AUTHOR

X.f. Navick

showing 3 related works from this author

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

European Physical Journal
researchProduct

Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory

2018

International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…

Particle physicsCERN LabPhysics::Instrumentation and DetectorsDark matterObservatoriesaxion: detector7. Clean energy01 natural sciencesCosmologyHigh Energy Physics::TheoryPrimakoff effectSensitivityWIMP0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionPrimakoff effectactivity reportPhysicsHelioscopeLarge Hadron Collider010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyToroidal magnetic fieldsDetectorsobservatory13. Climate actionCouplingsaxion-like particlesproposed experimentCERN Axion Solar Telescopeaxion: solarTelescopes
researchProduct

Background discrimination capabilities of a heat and ionization germanium cryogenic detector

2001

The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS Dark Matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions o…

Dark matterPopulationFOS: Physical sciencesAstrophysicsEDELWEISSAstrophysics01 natural scienceslaw.inventionNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]RecoillawIonization0103 physical sciencesNeutron010306 general physicseducationPhysicseducation.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsBolometerDetectorAstrophysics (astro-ph)Astronomy and AstrophysicsDark matter ; WIMP ; cryogenic detector
researchProduct