0000000001023940

AUTHOR

Elisa Fumagalli

showing 14 related works from this author

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at s=13 TeV with the ATLAS detector

2019

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of s=13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb −1 . A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times bran…

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Large Hadron Collider010308 nuclear & particles physicsBranching fractionMonte Carlo methodATLAS experimentResonance01 natural sciencesmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsBosonPhysics Letters B
researchProduct

Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data

2019

This paper describes the reconstruction of electrons and photons with the ATLAS detector, employed for measurements and searches exploiting the complete LHC Run 2 dataset. An improved energy clustering algorithm is introduced, and its implications for the measurement and identification of prompt electrons and photons are discussed in detail. Corrections and calibrations that affect performance, including energy calibration, identification and isolation efficiencies, and the measurement of the charge of reconstructed electron candidates are determined using up to 81 fb−1 of proton-proton collision data collected at √s=13 TeV between 2015 and 2017.

electronPhoton:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Protonparticle identification: efficiency13000 GeV-cmsElectron01 natural sciences7. Clean energyParticle identificationphoton: particle identification030218 nuclear medicine & medical imagingParticle identification methods; Performance of high energy physics detectorsHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Particle identification methods0302 clinical medicineSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]InstrumentationMathematical PhysicsPhysicsSettore FIS/01Performance of high energy physics detectorsLarge Hadron ColliderDetectorphotonATLAScalibration [energy]medicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollLHCParticle Physics - Experimentperformancep p: scatteringCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesNuclear physicsParticle identification method03 medical and health sciencesparticle identification: performanceAtlas (anatomy)0103 physical sciencesmedicineCalibrationddc:610High Energy PhysicsScience & Technologyelectron: particle identification010308 nuclear & particles physicshep-exenergy: calibrationefficiencyExperimental High Energy PhysicsPerformance of High Energy Physics Detectorsp p: colliding beamsexperimental results
researchProduct

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at s…

2019

A search for a right-handed gauge boson WR, decaying into a boosted right-handed heavy neutrino NR, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton–proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{−1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared to the expected signal. No significant d…

PhysicsNuclear and High Energy PhysicsGauge bosonParticle physicsLarge Hadron ColliderProton010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::Phenomenologyddc:500.201 natural sciencesMomentummedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physics::ExperimentLHCHeavy neutrino010306 general physicsLeptonPhysics Letters B
researchProduct

Measurement of Azimuthal Anisotropy of Muons from Charm and Bottom Hadrons in pp Collisions at s=13  TeV with the ATLAS Detector

2020

The elliptic flow of muons from the decay of charm and bottom hadrons is measured in pp collisions at sqrt[s]=13  TeV using a data sample with an integrated luminosity of 150  pb^{-1} recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range |η|<2.4. A significant nonzero elliptic anisotro…

PhysicsMuonLarge Hadron ColliderPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyElliptic flowHadronGeneral Physics and Astronomy01 natural sciencesNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Search for long-lived neutral particles produced in pp collisions at s=13  TeV decaying into displaced hadronic jets in the ATLAS inner detector and …

2020

A search is presented for pair production of long-lived neutral particles using 33     fb − 1 of √ s = 13     TeV proton–proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of …

PhysicsLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas (topology)HadronDetectorPropagatorScalar boson01 natural sciencesNuclear physicsHidden sectorPair production0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysical Review D
researchProduct

Search for the Higgs boson decays H → ee and H → eμ in pp collisions at s=13TeV with the ATLAS detector

2020

Searches for the Higgs boson decays H -> ee and H -> e mu are performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in pp collisions a ...

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Physics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::Phenomenology7. Clean energy01 natural sciencesSearch for the Higgs bosonmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesHiggs bosonmedicineHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment

2019

Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the standard model via vector boson fusion, Z(ℓℓ)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1  fb⁻¹ of pp collisions at a center-of-mass energy of √s = 13  TeV at the LHC. In combination with the results at √s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26(0.17-0.05+0.07) at 95% confidence level is observed (expected).

WIMP nucleon: scatteringMATÉRIA ESCURA13000 GeV-cmsGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterVector bosonHigh Energy Physics - Experimentdark matter [WIMP]Subatomär fysikHiggs particle: hadroproductionHigh Energy Physics - Experiment (hep-ex)vector boson: fusionSubatomic Physicsscattering [p p]S126.7[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Z0: hadronic decayvector boson: associated productionPhysicsS030DMPLarge Hadron Colliderhadronic decay [Z0]ATLAS experimentSettore FIS/01 - Fisica SperimentaleConfidence levelsBranching ratioATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Vector bosonmedicine.anatomical_structureThe standard modelCERN LHC CollHiggs particle: branching ratio: upper limitHiggs bosonLHCgamma-ray excesscolliding beams [p p]Particle Physics - ExperimentS126:Desig=7Particle physicsp p: scattering530 PhysicsCiências Naturais::Ciências FísicasHiggs bosonDark matter:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentHiggs particle: invisible decaybranching ratio: upper limit [Higgs particle]LHC ATLAS High Energy Physicsddc:500.2fusion [vector boson]530Standard ModelmodelsParticle dark matterAtlas (anatomy)0103 physical sciencesmedicineDark matterddc:530High Energy Physics010306 general physicshadronic decay [W]Ciencias ExactasATLAS CollaborationW: hadronic decayScience & TechnologyBranching fractionscattering [WIMP nucleon]hep-exATLAS detectorsHigh Energy Physics::Phenomenology:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaleptonic decay [Z0]Higgs Boson decayInvisible decaysExperimental High Energy PhysicsZ0: leptonic decayExtensions of Higgs sectorDark matter particlesElementary Particles and Fieldshadroproduction [Higgs particle]associated production [vector boson]High Energy Physics::ExperimentHadron-hadron collisionsstatisticalp p: colliding beamsinvisible decay [Higgs particle]experimental results
researchProduct

ATLAS data quality operations and performance for 2015-2018 data-taking

2020

The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide, the data must be scrutinised to ensure they are clean from any hardware or software related issues that may compromise their integrity. Prompt identification of these issues permits fast action to investigate, correct and potentially prevent future such problems that could render the data unusable. This is achieved through the monitoring of detector-level quantities and reconstructed collision ev…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]DATAPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsData managementdetector-systems performance01 natural sciencesSERVICEHigh Energy Physics - ExperimentSubatomär fysik//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)SoftwareCERNSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsOperationLarge detector-systems performanceSettore FIS/01Data processingLarge Hadron ColliderAtlas (topology)ROOT-S=13 TEVDetectorInstrumentation and Detectors (physics.ins-det)ATLASGNAM:Nuclear and elementary particle physics: 431 [VDP]qualityLarge detector systems for particle and astroparticle physics; Large; detector-systems performance; ROOT-S=13 TEV; COLLISIONS; SERVICE; SEARCH; GNAMParticle Physics - ExperimentperformanceCOLLISIONS530 PhysicsCiências Naturais::Ciências FísicasReal-time computing:Ciências Físicas [Ciências Naturais]610FOS: Physical sciencesprogrammingSEARCH0103 physical sciencesddc:610High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScience & TechnologyLarge detector systems for particle and astroparticle physics; Large detector-systems performance010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsData quality//purl.org/becyt/ford/1.3 [https]Collision530 PhysikmonitoringefficiencyData qualityExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicLargedata managementbusiness
researchProduct

Search for heavy long-lived multicharged particles in proton-proton collisions at s=13  TeV using the ATLAS detector

2019

A search for heavy long-lived multicharged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb(-1) collected in 2015 and 2016 from proton-proto ...

PhysicsLarge Hadron ColliderLuminosity (scattering theory)ProtonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::PhenomenologyDrell–Yan process01 natural sciences7. Clean energySymmetry (physics)Nuclear physicsmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physics::ExperimentParticle physics experimentsNuclear Experiment010306 general physicsPhysical Review D
researchProduct

Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at s=13  TeV

2020

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9  fb-1 of pp collisions collected with the ATLAS detector at s=13  TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant αS. Other observables, such as the momentum sharing between the two subjets, are nearly independent of αS. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tra…

QuarkQuantum chromodynamicsPhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservable01 natural sciencesCharged particleGluonPseudorapidityPhase space0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsParton showerPhysical Review D
researchProduct

Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data

2019

Artículo realizado por muchos autores. Solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración y los autores que firman como pertenecientes a la UAM

Z0 --&gt; electron positronJ/psi(3100) --> electron positronProton13000 GeV-cmsparticle identification [electron]ElectronZ0 --> electron positronelectron: transverse momentum01 natural sciencesphoton: particle identificationSubatomär fysik0302 clinical medicinescattering [p p]Nuclear Experiment proton–proton collisionsLarge Hadron ColliderCalibration and fittingphoton: transverse momentumand fitting methodsphoton: energy:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]calibration [energy]CERN LHC Collcalibration and fitting methodcolliding beams [p p]transverse momentum [electron]p p: scatteringCiências Naturais::Ciências Físicas610LHC ATLAS High Energy PhysicsPhoton energyFitting methodsJ/psi(3100) --&gt; electron positronradiative decay [J/psi(3100)]Nuclear physicsMomentum03 medical and health sciencesAtlas (anatomy)High Energy Physicspair production [electron]CALORIMETERScience & Technologyradiative decay [Z0]electron: particle identification010308 nuclear & particles physicsenergy [photon]Acceleratorfysik och instrumentering jets energy: calibrationCalorimeter methodExperimental High Energy PhysicsPerformance of High Energy Physics Detectorsp p: colliding beamsacceptancetransverse momentum [photon]PhotonJ/psi(3100): radiative decayCalorimeter methods; Pattern recognition cluster finding calibration; and fitting methods; Performance of High Energy Physics Detectors; PARTON DISTRIBUTIONS; LIQUID AR; CALORIMETER; KR030218 nuclear medicine & medical imagingHigh Energy Physics - Experimentelectron: pair productionHigh Energy Physics - Experiment (hep-ex)Subatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Collisions Calorimeter methodsInstrumentationMathematical PhysicsBosonPhysicsPattern recognition cluster finding calibration and fitting methodsSettore FIS/01 - Fisica Sperimentalecalibration and fitting methodsATLASLIQUID ARmedicine.anatomical_structureKRCalibrationcalibration and fitting methods; Calorimeter methods; cluster finding; Pattern recognition; Performance of High Energy Physics Detectors; Instrumentation; Mathematical PhysicsParticle Physics - Experiment530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesZ0: radiative decayAccelerator Physics and Instrumentationcalibration and fitting methods; Calorimeter methods; cluster finding; Pattern recognition; Performance of High Energy Physics DetectorsPattern recognition0103 physical sciencesmedicineddc:610hep-exCluster finding:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]particle identification [photon]FísicaPARTON DISTRIBUTIONSHigh Energy Physics::Experimentexperimental results
researchProduct

Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS

2019

The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb −1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon–nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02) , (−1.84,0.91) , and (1.09,1.90) . The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations b…

PhysicsNuclear and High Energy PhysicsPhotonLarge Hadron Collider010308 nuclear & particles physicsScatteringPerturbative QCDParton7. Clean energy01 natural sciencesNuclear physicsDistribution functionPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at s=13 TeV with the ATLAS detect…

2019

A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb−1 of LHC proton–proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015–2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as b-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark Z′ model and, separately, on generic Gaussian-shape contributions to the mas…

PhysicsNuclear and High Energy PhysicsPhotonLarge Hadron Collider010308 nuclear & particles physicsAtlas detectorAtlas (topology)ATLAS experiment7. Clean energy01 natural sciencesNuclear physicsTransverse plane0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsLow MassPhysics Letters B
researchProduct