0000000001024451

AUTHOR

K. E. Fransson

showing 2 related works from this author

Energy-energy correlations in hadronic final states from Z0 decays

1990

We have studied the energy-energy angular correlations in hadronic final states from Z0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ(5)/MS = 104-20 +25 (stat.)-20 +25(syst.)-00 +30(theor.) MeV, which corresponds to αs(91 GeV) = 0.106± 0.003 (stat.)±0.003(syst.)-0.000 +0.003(theor.). The theoretical error stems from different choices for the renormalization scale of αs. In the Monte Carlo simulation the scale of αs as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO2ND ORDER QCDElectron–positron annihilationHadronMonte Carlo methodElementary particleSTRONG-COUPLING-CONSTANT; ELECTRON-POSITRON ANNIHILATION; LUND MONTE-CARLO; FREE PERTURBATION-THEORY; 2ND ORDER QCD; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ALPHA-S; FRAGMENTATION MODELS; JET FRAGMENTATIONFRAGMENTATION MODELS01 natural sciencesJET FRAGMENTATIONNuclear physicsParticle decay0103 physical sciencesSTRONG-COUPLING-CONSTANTALPHA-S010306 general physicsNuclear ExperimentELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsCoupling constantPhysicsQUANTUM CHROMODYNAMICSAnnihilation010308 nuclear & particles physicsE+E-ANNIHILATIONFREE PERTURBATION-THEORYPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Experimental study of the triple-gluon vertex

1991

Abstract In four-jet events from e+e− →Z0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor Nc to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models…

Particle physicsCOLLISIONSNuclear and High Energy PhysicsE+E ANNIHILATION[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]LUND MONTE-CARLOElectron–positron annihilationHigh Energy Physics::LatticeNON-ABELIAN NATURE01 natural sciencesJET FRAGMENTATIONDECAYSPHYSICSAngular distribution3-GLUON VERTEX0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsLUND MONTE-CARLO; NON-ABELIAN NATURE; 4-JET EVENTS; JET FRAGMENTATION; E+E ANNIHILATION; 3-GLUON VERTEX; QCD; PHYSICS; COLLISIONS; DECAYSHigh Energy Physics::PhenomenologyCasimir elementQCDVertex (geometry)Gluon4-JET EVENTSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct