0000000001025697

AUTHOR

Rémi Langevin

showing 29 related works from this author

Lenses on very curved zones of a singular foliation of C2

2018

Abstract We renormalize, using suitable lenses, small domains of a singular holomorphic foliation of C 2 where the curvature is concentrated. At a proper scale, the leaves are almost translates of a graph that we will call profile. When the leaves of the foliations are levels f = λ , where f is a polynomial in 2 variables, this graph is polynomial. Finally we will indicate how our methods may be adapted to study levels of polynomials and 1-forms in C 3 .

Isolated singularity[ MATH ] Mathematics [math]Complex curvePolynomialPure mathematics010102 general mathematicsHolomorphic functionIsolated singularityCurvature01 natural sciencesComplex foliationGraphMSC: 14H20; 14B05; 53C65; 53C120103 physical sciencesFoliation (geology)Profile010307 mathematical physicsGeometry and Topology[MATH]Mathematics [math]0101 mathematicsMathematicsTopology and its Applications
researchProduct

Entropy, transverse entropy and partitions of unity

1994

AbstractThe topological entropy of a transformation is expressed in terms of partitions of unity. The transverse entropy of a flow tangential to a foliation is defined and expresed in a similar way. The geometric entropy of a foliation of a Riemannian manifold is compared with the transverse entropy of its geodesic flow.

CombinatoricsTransverse planeEntropy (classical thermodynamics)Applied MathematicsGeneral MathematicsConfiguration entropyMaximum entropy probability distributionMathematics::Differential GeometryStatistical physicsJoint quantum entropyMathematicsErgodic Theory and Dynamical Systems
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l'art

2016

International audience; Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, à Ê 5 l'espace utilisé dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique à l'espace affine euclidien usuel E 3 , l'ensembles des sphères et plans orientés de E 3 regroupés sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplificat…

faisceauespace de Minkowski-Lorentzespace des sphères[MATH]Mathematics [math]enveloppesMots-clés : Espace de Minkowski-Lorentz[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG][SHS]Humanities and Social Sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
researchProduct

Foliations of $\mathbb{S}^3$ by Cyclides

2018

Throughout the last 2–3 decades, there has been great interest in the extrinsic geometry of foliated Riemannian manifolds (see [2], [4] and [22]). ¶One approach is to build examples of foliations with reasonably simple singularities with leaves admitting some very restrictive geometric condition. For example (see [22], [23] and [17]), consider in particular foliations of $\mathbb{S}^{3}$ by totally geodesic or totally umbilical leaves with isolated singularities. ¶The article [14] provides families of foliations of $\mathbb{S}^{3}$ by Dupin cyclides with only one smooth curve of singularities. Quadrics and other families of cyclides like Darboux cyclides provide other examples. These foliat…

[ MATH ] Mathematics [math]Pure mathematics65D17Dupin cyclides53A30foliations of $\mathbb{S}^{3}$Darboux cyclidesMathematics::Differential Geometry[MATH] Mathematics [math][MATH]Mathematics [math]quadrics53C12ComputingMilieux_MISCELLANEOUS
researchProduct

THE ZONE MODULUS OF A LINK

2005

In this paper, we construct a conformally invariant functional for two-component links called the zone modulus of the link. Its main property is to give a sufficient condition for a link to be split. The zone modulus is a positive number, and its lower bound is 1. To construct a link with modulus arbitrarily close to 1, it is sufficient to consider two small disjoint spheres each one far from the other and then to construct a link by taking a circle enclosed in each sphere. Such a link is a split link. The situation is different when the link is non-split: we will prove that the modulus of a non-split link is greater than [Formula: see text]. This value of the modulus is realized by a spec…

CombinatoricsAlgebra and Number TheoryCorollaryHopf linkSplit linkMathematical analysisModulusMöbius energyDisjoint setsInvariant (mathematics)Upper and lower boundsMathematicsJournal of Knot Theory and Its Ramifications
researchProduct

The geometry of canal surfaces and the length of curves in de Sitter space

2011

Abstract We find the minimal value of the length in de Sitter space of closed space-like curves with non-vanishing non-space-like geodesic curvature vector. These curves are in correspondence with closed almost-regular canal surfaces, and their length is a natural magnitude in conformal geometry. As an application, we get a lower bound for the total conformal torsion of closed space curves.

Mathematics - Differential GeometryDe Sitter spaceTorsion (algebra)Magnitude (mathematics)Conformal mapGeometryGeometry and TopologyClosed spaceConformal geometryUpper and lower boundsMathematicsGeodesic curvatureadvg
researchProduct

Holomorphic Maps and Pencils of Circles

2008

(2008). Holomorphic Maps and Pencils of Circles. The American Mathematical Monthly: Vol. 115, No. 8, pp. 690-700.

Pure mathematicsGeneral Mathematics010102 general mathematics0103 physical sciencesHolomorphic function010307 mathematical physics0101 mathematics01 natural sciencesMathematicsThe American Mathematical Monthly
researchProduct

Blending canal surfaces along given circles using Dupin cyclides

2013

We study blends between canal surfaces using Dupin cyclides via the space of spheres. We have already studied the particular case where it is possible to blend two canal surfaces using one piece of Dupin cyclide bounded by two characteristic circles, but this is not possible in the general case. That is why we solve this problem using two pieces of different cyclides, which is always possible. To get this conclusion and give the algorithms allowing to obtain such a result, we study, at first, the blend between two circles by a piece of cyclide. We impose to the cyclide to be tangent to a given sphere containing one of the circles. We give the existence condition on the previous circles to h…

Pure mathematicsComputational Theory and MathematicsApplied MathematicsBounded functionDupin cyclideTangentGeometrySPHERESSpace (mathematics)Computer Science ApplicationsMathematicsInternational Journal of Computer Mathematics
researchProduct

Application of spaces of subspheres to conformal invariants of curves and canal surfaces

2013

Extremal lengthConformal field theoryConformal symmetryGeneral MathematicsMathematical analysisConformal mapConformal geometryMathematical physicsOsculating circleMathematicsAnnales Polonici Mathematici
researchProduct

Habitat geometry of benthic substrata: effects on arrival and settlement of mobile epifauna

1996

Abstract The effect of substratum complexity on the early stages of colonization by mobile epifauna was assessed through a comparative study based on the architecture of artificial substrata. We conducted field observations over 4 years, on six types of small plastic substrata placed in the low intertidal zone of an exposed rocky shore, for varied immersion periods (1, 2, 4 and 12 wk). The use of artificial substrata allowed us to manipulate independently structural and spatial features of the habitat, such as total area, amount of folds, intercepting area, total volume, and interstitial volume. The invertebrate fauna colonizing over 300 sample units was recorded, and their densities compar…

Rocky shoreHabitatBenthosBenthic zoneEcologyFaunaIntertidal zoneGeometryEpiphyteAquatic ScienceBiologyEcology Evolution Behavior and SystematicsInvertebrateJournal of Experimental Marine Biology and Ecology
researchProduct

On bounds for total absolute curvature of surfaces in hyperbolic 3-space

2003

Abstract We construct examples of surfaces in hyperbolic space which do not satisfy the Chern–Lashof inequality (which holds for immersed surfaces in Euclidean space). To cite this article: R. Langevin, G. Solanes, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Surface (mathematics)Differential geometryEuclidean spaceHyperbolic spaceMathematical analysisHyperbolic manifoldTotal curvatureGeneral MedicineCurvatureHyperbolic triangleMathematicsComptes Rendus Mathematique
researchProduct

Osculating spheres to a family of curves.

2021

The authors study the extrinsic conformal geometry of space forms involving pencils of circles or spheres. They consider curves orthogonal to a foliation of an open set of a 3-sphere by spheres and prove that the osculating spheres to the curves at points of a leaf form a pencil. They first prove the analogous result in a lower-dimensional case, that is, foliations of the 2-dimensional sphere and their orthogonal foliations. The 3-dimensional result, that is, the result for a foliation of (an open subset of) the 3-dimensional sphere by 2-dimensional spheres, is obtained using the de Sitter space, which is a model for the set of oriented spheres of the 3-dimensional sphere.

osculating spherepencil of spheresfoliation[MATH] Mathematics [math]conformal geometry
researchProduct

The non-degenerate Dupin cyclides in the space of spheres using Geometric Algebra

2012

International audience; Dupin cyclides are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century and \textcolor{black}{were} introduced in CAD by R. Martin in 1982. A Dupin cyclide can be defined, in two different ways, as the envelope of a one-parameter family of oriented spheres. So, it is very interesting to model the Dupin cyclides in the space of spheres, space wherein each family of spheres can be seen as a conic curve. In this paper, we model the non-degenerate Dupin cyclides and the space of spheres using Conformal Geometric Algebra. This new approach permits us to benefit from the advantages of the use of Geometric Alge…

[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Dupin cyclideDupin cyclide[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]010103 numerical & computational mathematics02 engineering and technologySpace (mathematics)[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesGeometric algebra[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]space of spheresAlgebraic surface0202 electrical engineering electronic engineering information engineering0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsconformal geometric algebraApplied MathematicsDegenerate energy levelsConformal geometric algebra020207 software engineering[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR][INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]AlgebraConic section[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]SPHERES
researchProduct

Blending Planes and Canal Surfaces Using Dupin Cyclides

2011

We develop two different new algorithms of G1-blending between planes and canal surfaces using Dupin cyclides. It is a generalization of existing algorithms that blend revolution surfaces and planes using a plane called construction plane. Spatial constraints were necessary to do that. Our work consist in building three spheres to determine the Dupin cyclide of the blending. The first algorithm is based on one of the definitions of Dupin cyclides taking into account three spheres of the same family enveloping the cyclide. The second one uses only geometric properties of Dupin cyclide. The blending is fixed by a circle of curvature onto the canal surface. Thanks to this one, we can determine…

Surface (mathematics)GeneralizationComputer sciencePlane (geometry)Dupin cyclideGeometrySPHERESMathematics::Differential GeometrySymmetry (geometry)Curvature
researchProduct

Differential Geometry of Curves and Surfaces

2001

The goal of this article is to present the relation between some differential formulas, like the Gauss integral for a link, or the integral of the Gaussian curvature on a surface, and topological invariants like the linking number or the Euler characteristic.

PhysicsSurface (mathematics)symbols.namesakeFrenet–Serret formulasGaussian integralMathematical analysisGaussian curvaturesymbolsConstant-mean-curvature surfaceDifferential geometry of curvesLinking numberDifferential (mathematics)
researchProduct

Iterative construction of Dupin cyclides characteristic circles using non-stationary Iterated Function Systems (IFS)

2012

International audience; A Dupin cyclide can be defined, in two different ways, as the envelope of an one-parameter family of oriented spheres. Each family of spheres can be seen as a conic in the space of spheres. In this paper, we propose an algorithm to compute a characteristic circle of a Dupin cyclide from a point and the tangent at this point in the space of spheres. Then, we propose iterative algorithms (in the space of spheres) to compute (in 3D space) some characteristic circles of a Dupin cyclide which blends two particular canal surfaces. As a singular point of a Dupin cyclide is a point at infinity in the space of spheres, we use the massic points defined by J.C. Fiorot. As we su…

Pure mathematicsEnvelope of spheresMathematical analysisDupin cyclideDupin cyclideTangent[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR]Singular point of a curveComputer Graphics and Computer-Aided DesignIndustrial and Manufacturing Engineering[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]Computer Science ApplicationsCircleIterated function systemDefinite symmetric bilinear formConic sectionSpace of spheresSubdivisionPoint (geometry)Mathematics::Differential GeometryPoint at infinityEnvelope (mathematics)Mathematics
researchProduct

Iterative constructions of central conic arcs using non-stationary IFS

2012

Several methods of subdivision exist to build parabola arcs or circle arcs in the usual Euclidean affine plane. Using a compass and a ruler, it is possible to construct, from three weighted points, circles arcs in the affine space without projective considerations. This construction is based on rational quadratic Bézier curve properties. However, when the conic is an ellipse or a hyperbola, the weight computation is relatively hard. As the equation of a conic is $\qaff(x,y)=1$, where $\qaff$ is a quadratic form, one can use the pseudo-metric associed to $\qaff$ in the affine plane and then, the conic geometry is also handled as an Euclidean circle. At each step of the iterative algorithm, t…

ellipsehyperbolaIFS.subdivision[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]IFSdefinite symmetric bilinear formcircle
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l’art

2016

International audience; Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, a E 5 l'espace utilise dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique a l'espace affine euclidien usuel E 3 , l'ensemble des sphères et plans orientes de E 3 regroupes sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplificati…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]faisceauespace des sphères[MATH] Mathematics [math]enveloppes[MATH]Mathematics [math][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
researchProduct

Canal foliations of S 3

2012

The goal of the article is to classify foliations of S3 by regular canal surfaces, that is envelopes of one-parameter families of spheres which are immersed surfaces. We will add some extra information when the leaves are “surfaces of revolution” in a conformal sense.

foliationGeneral Mathematics53A30Foliation (geology)Conformal mapGeometryMathematics::Differential GeometrySurface of revolution53C12MathematicsComputingMethodologies_COMPUTERGRAPHICScanal surface
researchProduct

Fenchel type theorems for submanifolds of S n

1996

Pure mathematicsFenchel's duality theoremGeneral MathematicsMathematical analysisType (model theory)MathematicsCommentarii Mathematici Helvetici
researchProduct

Darboux curves on surfaces I

2017

International audience; In 1872, G. Darboux defined a family of curves on surfaces of $\mathbb{R}^3$ which are preserved by the action of the Mobius group and share many properties with geodesics. Here, we characterize these curves under the view point of Lorentz geometry and prove that they are geodesics in a 3-dimensional sub-variety of a quadric $\Lambda^4$ contained in the 5-dimensional Lorentz space $\mathbb{R}^5_1$ naturally associated to the surface. We construct a new conformal object: the Darboux plane-field $\mathcal{D}$ and give a condition depending on the conformal principal curvatures of the surface which guarantees its integrability. We show that $\mathcal{D}$ is integrable w…

[ MATH ] Mathematics [math]GeodesicGeneral MathematicsDarboux frame02 engineering and technology01 natural sciencessymbols.namesakeMoving frame57R300202 electrical engineering electronic engineering information engineeringDarboux curves0101 mathematics[MATH]Mathematics [math]Möbius transformationMathematicsConformal geometryEuclidean spaceMSC: Primary 53A30 Secondary: 53C12 53C50 57R3053A3053C50010102 general mathematicsMathematical analysis53C12Ridge (differential geometry)Family of curvessymbolsSpace of spheres020201 artificial intelligence & image processingConformal geometry
researchProduct

Integral geometry from Buffon to geometers of today

2016

La géométrie intégrale, aussi appelée théorie des probabilités géométriques, a accompagné pendant plus de deux siècles le développement des probabilités, de la théorie de la mesure et de la géométrie. Elle commence pour nous en 1777, date de la publication du « traité d'arithmétique morale » de Buffon. Ce n'est que presque un siècle plus tard que Crofton explicitera ce que veut dire mettre une mesure sur un ensemble continu comme l'ensemble des droites. Le sens de la formule de Cauchy-Crofton « la longueur d'une courbe plane est proportionnelle à la mesure pondérée de l'ensemble des droites qui la coupent », est maintenant clair. Au début du vingtième siècle, la géométrie intégrale commence…

géométrie lorentzienneprojectionsnoeudsGéométrie intégralecourbessingularités algébriquessectionsgéométrie de Möbius[MATH] Mathematics [math]surfacesentrelacsfeuilletages
researchProduct

Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension

1994

AbstractWe construct an example of transitive Anosov flow on a compact 3-manifold, which admits a transversal torus and is not the suspension of an Anosov diffeomorphism.

Pure mathematicsMathematics::Dynamical SystemsFlow (mathematics)Applied MathematicsGeneral MathematicsTransversal (combinatorics)TorusAnosov diffeomorphismMathematics::Symplectic GeometryMathematics::Geometric TopologySuspension (topology)MathematicsErgodic Theory and Dynamical Systems
researchProduct

Conformal invariance of the writhe of a knot

2008

We give a new proof of an old theorem by Banchoff and White 1975 that claims that the writhe of a knot is conformally invariant.

Mathematics - Differential GeometryPure mathematicsQuantitative Biology::BiomoleculesAlgebra and Number TheoryConformal mapGeometric Topology (math.GT)Mathematics::Geometric TopologyMathematics - Geometric TopologyDifferential Geometry (math.DG)Conformal symmetryFOS: Mathematics57M25 53A30Knot (mathematics)MathematicsWrithe
researchProduct

Foliations making a constant angle with principal directions on ellipsoids

2015

General MathematicsMathematical analysisPrincipal (computer security)GeometryEllipsoidConstant angleMathematicsAnnales Polonici Mathematici
researchProduct

Lenses on very curved zones of a singular line field of ${\mathbb C}^2$ or of a singular plane field of ${\mathbb C}^3$

2020

We renormalize, using suitable lenses, small domains of a singular holomorphic line field of ${\mathbb C}^2$ or plane field of ${\mathbb C}^3$ where the curvature of a plane-field is concentrated. At a proper scale the field is almost invariant by translations. When the field is integrable, the leaves are locally almost translates of a surface that we will call {\it profile}. When the singular rays of the tangent cone (a generalization to a plane-field of the tangent cone of a singular surface is defined) are isolated, we obtain more precise results. We also generalize a result of Merle (\cite{Me}) concerning the contact order of generic polar curves with the singular level $f=0$ when $\ome…

profile[mathIT][MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]profile domains [mathAG][MATH] Mathematics [math]complex polynomialisolated singularity[mathGT][MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]complex one-form[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG][MATH]Mathematics [math][MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]polar curve[mathDG]
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l'art

2016

Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, à Ê 5 l'espace utilisé dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique à l'espace affine euclidien usuel E 3 , l'ensembles des sphères et plans orientés de E 3 regroupés sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplification des calculs quadrati…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]faisceauespace de Minkowski-Lorentzespace des sphères[SHS] Humanities and Social Sciences[MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG]enveloppes
researchProduct

Topological canal foliations

2019

Regular canal surfaces of $\mathbb{R}^3$ or $\mathbb{S}^3$ admit foliations by circles: the characteristic circles of the envelope. In order to build a foliation of $\mathbb{S}^3$ with leaves being canal surfaces, one has to relax the condition “canal” a little (“weak canal condition”) in order to accept isolated umbilics. Here, we define a topological condition which generalizes this “weak canal” condition imposed on leaves, and classify the foliations of compact orientable 3-manifolds we can obtain this way.

rational parametrizationsQuantitative Biology::Tissues and OrgansGeneral MathematicsPhysics::Medical PhysicssurfacesTopology01 natural sciencesQuantitative Biology::Cell Behavior0103 physical sciencesotorhinolaryngologic diseases57R30[MATH]Mathematics [math]0101 mathematicsMathematicsEnvelope (waves)griddlingQuantitative Biology::Molecular Networks010102 general mathematicsOrder (ring theory)53C12foliationFoliation (geology)sense organsMathematics::Differential Geometry010307 mathematical physicscanal surfaceJournal of the Mathematical Society of Japan
researchProduct

Gluing Dupin cyclides along circles, finding a cyclide given three contact conditions.

2013

Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential geometry, the simplest after planes and spheres. We prove here that, given three oriented contact conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs to a codimension one subset, then there is a one-parameter family of solutions, which are all tangent along a curve determined by the three contact conditions.

[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR][ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR]Mathematics::Differential Geometry[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]
researchProduct