0000000001026503

AUTHOR

Pavel G. Naumov

0000-0003-3085-6048

Pressure effect on superconductivity in FeSe0.5Te0.5

Due to the simple layered structure, isostructural FeSe and FeSe0.5Te0.5 are clue compounds for understanding the principal mechanisms of superconductivity in the family of Fe-based superconductors. High-pressure magnetic, structural and Mossbauer studies have been performed on single-crystalline samples of superconducting FeSe0.5Te0.5 with Tc = 13.5 K. Susceptibility data have revealed a strong increase of Tc up to 19.5 K for pressures up to 1.3 GPa, followed by a plateau in the Tc(p) dependence up to 5.0 GPa. Further pressure increase leads to a disappearance of the superconducting state around 7.0 GPa. X-ray diffraction and Mossbauer studies explain this fact by a tetragonal-to-hexagonal…

research product

Pressure effect on superconductivity in FeSe0.5Te0.5

Due to the simple layered structure, isostructural FeSe and FeSe0.5Te0.5 are clue compounds for understanding the principal mechanisms of superconductivity in the family of Fe-based superconductors. High-pressure magnetic, structural and M\"ossbauer studies have been performed on single-crystalline samples of superconducting FeSe0.5Te0.5 with Tc = 13.5 K. Susceptibility data have revealed a strong increase of Tc up to 19.5 K for pressures up to 1.3 GPa, followed by a plateau in the Tc(p) dependence up to 5.0 GPa. Further pressure increase leads to a disappearance of the superconducting state around 7.0 GPa. X-ray diffraction and M\"ossbauer studies explain this fact by a tetragonal-to-hexag…

research product

Pressure-induced magnetic collapse and metallization of TlFe1.6Se2

The crystal structure, magnetic ordering, and electrical resistivity of $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ were studied at high pressures. Below $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$, $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ is an antiferromagnetically ordered semiconductor with a $\mathrm{ThC}{\mathrm{r}}_{2}\mathrm{S}{\mathrm{i}}_{2}$-type structure. The insulator-to-metal transformation observed at a pressure of $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$ is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range $\ensuremath{\sim}7.5\text{--}11\phantom{\rule{…

research product

Structural transitions under high-pressure in a langasite-type multiferroic Ba3TaFe3Si2O14

Abstract The iron containing langasite family compound Ba3Ta57Fe3Si2O14 was studied at high pressure up to 30 GPa at room temperature by means of in situ X-ray diffraction, Raman and Mossbauer spectroscopies in diamond anvil cell. Two structural transitions at pressures ∼5 and ∼20 GPa are observed. At ∼5 GPa, the low-pressure trigonal P321 phase undergoes phase transition to the most likely P3 structure as manifested by slight increase in the c/a ratio and by anomalies of the Mossbauer and Raman spectra parameters. At ∼20 GPa, the first order phase transition to monoclinic structure occurred with a drop of unit cell volume by 9%. The appearance of the ferroelectric state at such transitions…

research product

Structure and electrical resistivity of mixed-valent EuNi2P2 at high pressure.

The structural properties and electrical resistivity of homogeneous mixed-valent EuNi2P2 are studied at pressures up to 45 GPa. No structural phase transition is observed in the whole pressure range and the overall pressure behavior of the structural parameters is similar to that of related compounds in the collapsed tetragonal ThCr2Si2-type structure. Electrical resistivity measured up to 31 GPa at temperatures between 4 and 300 K exhibits continuous changes from the behavior typical for a mixed-valent Eu system to that of a normal metallic system at pressures above 20 GPa, indicating a transition of the strongly mixed-valent Eu atoms with a valence ~2.5 towards a pure trivalent state. No …

research product