0000000001029376
AUTHOR
Michael Schollmeier
Bisdihydrodiols, rather than dihydrodiol oxides, are the principal microsomal metabolites of tumorigenic trans-3,4-dihydroxy-3,4-dihydrodibenz[a,h]anthracene.
Several studies on metabolism and biological activity of tumorigenic dibenz[a,h]anthracene (DBA) and its derivatives have led to the conclusion that the M-region dihydrodiol, trans-3,4-dihydroxy-3,4-dihydro-DBA (DBA-3,4-dihydrodiol), is the precursor of the ultimate mutagenic and tumorigenic metabolite of DBA with the presumed structure of a bay-region dihydrodiol oxide. Incubations of DBA-3,4-dihydrodiol (50 microM) with the microsomal hepatic fraction of Sprague-Dawley rats pretreated with Aroclor 1254 yielded more than 13 metabolites upon separation by HPLC. anti-3,4-Dihydroxy-1,2-epoxy-1,2,3,4-tetrahydro-DBA [0.27 nmol/(nmol of P450.15 min)] could be identified for the first time by UV …
Stereoselective metabolism of dibenz(a,h)anthracene to trans-dihydrodiols and their activation to bacterial mutagens.
Dibenz(a,h)anthracene (DBA), a carcinogenic, polycyclic aromatic hydrocarbon ubiquitous in the environment, is metabolized by the hepatic microsomal fraction of immature Sprague-Dawley rats pretreated with Aroclor 1254 to 27 ethyl acetate-extractable metabolites. More than half of these metabolites (51%) consisted of trans-1,2-; -3,4-; and -5,6-dihydrodiols including their identified secondary metabolites. The three trans-dihydrodiols (4.9, 15.8, and 0.6% of total metabolic conversion) were highly enriched in their R,R enantiomers (85, 71, and 98%) as determined by high performance liquid chromatography on suitable chiral stationary phases. This is explained on the basis of the stereoselect…