0000000001030374

AUTHOR

Austin Larson

showing 3 related works from this author

Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype

2021

Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild dev…

0301 basic medicineIn silicoBiologyArticleREGION03 medical and health sciencesROGERS-DANKS-SYNDROME0302 clinical medicineMissense mutationHISTONE H3GeneGenetics (clinical)Loss functionGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]DELETIONDEFECTSMethylationPhenotypeLYSINE 36030104 developmental biologyMolecular mechanismWOLF-HIRSCHHORN-SYNDROME030217 neurology & neurosurgeryFunction (biology)Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]Genetics in Medicine
researchProduct

PURA- Related Developmental and Epileptic Encephalopathy: Phenotypic and Genotypic Spectrum

2021

Background and ObjectivesPurine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients.MethodsData on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained.ResultsA cohort of 142 patients was include…

Pediatricsmedicine.medical_specialtySocio-culturale[SDV.GEN] Life Sciences [q-bio]/GeneticsElectroencephalographyEpilepsyDevelopmental and Epileptic EncephalopathyIntellectual disabilitymedicineGenetics (clinical)feeding difficulties[SDV.GEN]Life Sciences [q-bio]/Geneticsmedicine.diagnostic_testbusiness.industryfungimedicine.diseaseHypotoniaEpileptic spasmsNeonatal hypotonianeonatal hypotoniaEpilepsy syndromesCohortepilepsyNeurology (clinical)medicine.symptombusiness
researchProduct

The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder

2022

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability. The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum (ER) stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n=38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/intellectual disability (71%), non-specific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%)…

Autism Spectrum Disorder[SDV]Life Sciences [q-bio]DwarfismBiologyBioinformaticsWeight GainShort stature03 medical and health sciences0302 clinical medicineNeurodevelopmental disorderNeuroimagingSeizuresvariable expressivityIntellectual disabilityGeneticsmedicineMissense mutationHumansQRICH1hypotoniaGenetics (clinical)030304 developmental biology0303 health sciencesmedicine.diseaseQRICH1Hypotoniashort statureScoliosisvariantAutism spectrum disorderNeurodevelopmental Disordersintellectual disabilityMuscle Hypotoniamedicine.symptom030217 neurology & neurosurgery
researchProduct