0000000001030841

AUTHOR

Asher Leeks

showing 2 related works from this author

The evolution of collective infectious units in viruses

2019

Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collect…

Viral pathogenesisviruseseducationGenome ViralBiologyVirus ReplicationGenomebehavioral disciplines and activitiesArticleEvolution Molecular03 medical and health sciences0302 clinical medicine030304 developmental biology0303 health sciencesVirus AssemblyAntiviral resistanceVirionDefective VirusesModels TheoreticalVirologyViral replicationViral genomesVirus Diseasespopulation characteristicsRNA Viral030217 neurology & neurosurgery
researchProduct

Beneficial coinfection can promote within-host viral diversity

2018

Abstract In many viral infections, a large number of different genetic variants can coexist within a host, leading to more virulent infections that are better able to evolve antiviral resistance and adapt to new hosts. But how is this diversity maintained? Why do faster-growing variants not outcompete slower-growing variants, and erode this diversity? One hypothesis is if there are mutually beneficial interactions between variants, with host cells infected by multiple different viral genomes producing more, or more effective, virions. We modelled this hypothesis with both mathematical models and simulations, and found that moderate levels of beneficial coinfection can maintain high levels o…

phenotype mixingfrequency dependenceevolutionmultipartitecoinfectionResearch ArticlediversityVirus Evolution
researchProduct