0000000001034084

AUTHOR

Anthony Wynshaw-boris

showing 1 related works from this author

Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus.

2014

Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling, and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) E cells was significant…

Neuroscience(all)Dishevelled ProteinsMice TransgenicBiologyTransgenicArticleMiceEpendymaCell polarityFLOXGeneticsmedicinePsychologyAnimalsCiliaAdaptor Proteins Signal Transducingchemistry.chemical_classificationNeurology & NeurosurgeryGeneral NeuroscienceCiliumSignal TransducingNeurosciencesWnt signaling pathwayAdaptor ProteinsCell PolarityPhosphoproteinsDishevelledCell biologymedicine.anatomical_structurechemistryMotile ciliumCognitive SciencesEpendymaIntracellularHydrocephalusSignal TransductionNeuron
researchProduct